

Mushroom

Reinforcement Learning python library

Mushroom is a Reinforcement Learning (RL) library that aims to be a simple, yet
powerful way to make RL and deep RL experiments. The idea behind Mushroom
consists in offering the majority of RL algorithms providing a common interface
in order to run them without excessive effort. Moreover, it is designed in such
a way that new algorithms and other stuff can generally be added transparently
without the need of editing other parts of the code. Mushroom makes a large use
of the environments provided by
OpenAI Gym [https://gym.openai.com/] library and of the regression models
provided by Scikit-Learn [http://scikit-learn.org/stable/] library giving
also the possibility to build and run neural networks using
Tensorflow [https://www.tensorflow.org] library.

With Mushroom you can:

	solve RL problems simply writing a single small script;

	add custom algorithms and other stuff transparently;

	use all RL environments offered by OpenAI Gym and build customized
environments as well;

	exploit regression models offered by Scikit-Learn or build a customized one
with Tensorflow;

	run experiments with CPU or GPU.

Basic run example

Solve a discrete MDP in few a lines. Firstly, create a MDP:

from mushroom.environments import GridWorld

mdp = GridWorld(width=3, height=3, goal=(2, 2), start=(0, 0))

Then, an epsilon-greedy policy with:

from mushroom.policy import EpsGreedy
from mushroom.utils.parameters import Parameter

epsilon = Parameter(value=1.)
policy = EpsGreedy(epsilon=epsilon)

Eventually, the agent is:

from mushroom.algorithms.value import QLearning

learning_rate = Parameter(value=.6)
agent = QLearning(policy, mdp.info, learning_rate)

Learn:

from mushroom.core.core import Core

core = Core(agent, mdp)
core.learn(n_steps=10000, n_steps_per_fit=1)

Print final Q-table:

import numpy as np

shape = agent.approximator.shape
q = np.zeros(shape)
for i in range(shape[0]):
 for j in range(shape[1]):
 state = np.array([i])
 action = np.array([j])
 q[i, j] = agent.approximator.predict(state, action)
print(q)

Results in:

[[6.561 7.29 6.561 7.29]
 [7.29 8.1 6.561 8.1]
 [8.1 9. 7.29 8.1]
 [6.561 8.1 7.29 8.1]
 [7.29 9. 7.29 9.]
 [8.1 10. 8.1 9.]
 [7.29 8.1 8.1 9.]
 [8.1 9. 8.1 10.]
 [0. 0. 0. 0.]]

where the Q-values of each action of the MDP are stored for each rows
representing a state of the MDP.

Download and installation

Mushroom can be downloaded from the
GitHub [https://github.com/carloderamo/mushroom] repository.
Installation can be done running

pip3 install -e .

and

pip3 install -r requirements.txt

to install all its dependencies.

To compile the documentation:

cd mushroom/docs
make html

or to compile the pdf version:

cd mushroom/docs
make latexpdf

To launch mushroom test suite:

cd mushroom/tests
python3 -m pytest

Contents:

	Mushroom
	Core

	Environments

	Algorithms

	Approximators

	Features

	Policy

	Distributions

	Solvers

	Utils

	Tutorials
	How to make a simple experiment

	How to make an advanced experiment

	How to create a regressor

Mushroom

List of the Mushroom modules:

	Core

	Environments
	Environments
	Atari

	Car on hill

	Finite MDP

	Grid World

	Gym

	Inverted pendulum

	LQR

	Mujoco

	Segway

	Ship steering

	Generators
	Grid world

	Simple chain

	Taxi

	Algorithms
	Agent

	Subpackages
	Value
	TD

	Batch TD

	DQN

	Policy search
	Policy gradient

	Black-Box optimization

	Actor-Critic
	Deterministic Policy Gradient

	Deep Deterministic Policy Gradient

	Stochastic Actor-Critic

	Approximators
	Regressor

	Approximator
	Linear

	Pytorch Neural Network

	Features
	Components
	Basis
	Fourier

	Gaussian RBF

	Polynomial

	Tensors
	Gaussian tensor

	Tiles

	Policy
	Gaussian policy

	TD policy

	Distributions
	Gaussian

	Solvers
	Dynamic programming

	Utils
	Angles

	Callbacks

	Dataset

	Eligibility trace

	Features

	Folder

	Minibatches

	Numerical gradient

	Parameters

	Preprocessor

	Replay memory

	Spaces

	Table

	Variance parameters

	Viewer

Core

	
class mushroom.core.core.Core(agent, mdp, callbacks=None)

	Bases: object

Implements the functions to run a generic algorithm.

	
__init__(agent, mdp, callbacks=None)

	Constructor.

	Parameters

	
	agent (Agent) – the agent moving according to a policy;

	mdp (Environment) – the environment in which the agent moves;

	callbacks (list) – list of callbacks to execute at the end of
each learn iteration.

	
learn(n_steps=None, n_episodes=None, n_steps_per_fit=None, n_episodes_per_fit=None, render=False, quiet=False)

	This function moves the agent in the environment and fits the policy
using the collected samples. The agent can be moved for a given number
of steps or a given number of episodes and, independently from this
choice, the policy can be fitted after a given number of steps or a
given number of episodes. By default, the environment is reset.

	Parameters

	
	n_steps (int, None) – number of steps to move the agent;

	n_episodes (int, None) – number of episodes to move the agent;

	n_steps_per_fit (int, None) – number of steps between each fit of the
policy;

	n_episodes_per_fit (int, None) – number of episodes between each fit
of the policy;

	render (bool, False) – whether to render the environment or not;

	quiet (bool, False) – whether to show the progress bar or not.

	
evaluate(initial_states=None, n_steps=None, n_episodes=None, render=False, quiet=False)

	This function moves the agent in the environment using its policy.
The agent is moved for a provided number of steps, episodes, or from
a set of initial states for the whole episode. By default, the
environment is reset.

	Parameters

	
	initial_states (np.ndarray, None) – the starting states of each
episode;

	n_steps (int, None) – number of steps to move the agent;

	n_episodes (int, None) – number of episodes to move the agent;

	render (bool, False) – whether to render the environment or not;

	quiet (bool, False) – whether to show the progress bar or not.

	
_step(render)

	Single step.

	Parameters

	render (bool) – whether to render or not.

	Returns

	A tuple containing the previous state, the action sampled by the
agent, the reward obtained, the reached state, the absorbing flag
of the reached state and the last step flag.

	
reset(initial_states=None)

	Reset the state of the agent.

Environments

Environments

	
class mushroom.environments.environment.MDPInfo(observation_space, action_space, gamma, horizon)

	Bases: object

This class is used to store the information of the environment.

	
__init__(observation_space, action_space, gamma, horizon)

	Constructor.

	Parameters

	
	observation_space ([Box, Discrete]) – the state space;

	action_space ([Box, Discrete]) – the action space;

	gamma (float) – the discount factor;

	horizon (int) – the horizon.

	
size

	The sum of the number of discrete states and discrete actions. Only
works for discrete spaces.

	Type

	Returns

	
shape

	The concatenation of the shape tuple of the state and action
spaces.

	Type

	Returns

Atari

	
class mushroom.environments.atari.MaxAndSkip(env, skip, max_pooling=True)

	Bases: gym.core.Wrapper

	
__init__(env, skip, max_pooling=True)

	Initialize self. See help(type(self)) for accurate signature.

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object) – an action provided by the agent

	Returns

	agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (bool): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	Return type

	observation (object)

	
reset(**kwargs)

	Resets the state of the environment and returns an initial observation.

	Returns

	the initial observation.

	Return type

	observation (object)

	
close()

	Override close in your subclass to perform any necessary cleanup.

Environments will automatically close() themselves when
garbage collected or when the program exits.

	
render(mode='human', **kwargs)

	Renders the environment.

The set of supported modes varies per environment. (And some
environments do not support rendering at all.) By convention,
if mode is:

	human: render to the current display or terminal and
return nothing. Usually for human consumption.

	rgb_array: Return an numpy.ndarray with shape (x, y, 3),
representing RGB values for an x-by-y pixel image, suitable
for turning into a video.

	ansi: Return a string (str) or StringIO.StringIO containing a
terminal-style text representation. The text can include newlines
and ANSI escape sequences (e.g. for colors).

Note

	Make sure that your class’s metadata ‘render.modes’ key includes

	the list of supported modes. It’s recommended to call super()
in implementations to use the functionality of this method.

	Parameters

	mode (str) – the mode to render with

Example:

	class MyEnv(Env):

	metadata = {‘render.modes’: [‘human’, ‘rgb_array’]}

	def render(self, mode=’human’):

	
	if mode == ‘rgb_array’:

	return np.array(…) # return RGB frame suitable for video

	elif mode == ‘human’:

	… # pop up a window and render

	else:

	super(MyEnv, self).render(mode=mode) # just raise an exception

	
seed(seed=None)

	Sets the seed for this env’s random number generator(s).

Note

Some environments use multiple pseudorandom number generators.
We want to capture all such seeds used in order to ensure that
there aren’t accidental correlations between multiple generators.

	Returns

	
	Returns the list of seeds used in this env’s random

	number generators. The first value in the list should be the
“main” seed, or the value which a reproducer should pass to
‘seed’. Often, the main seed equals the provided ‘seed’, but
this won’t be true if seed=None, for example.

	Return type

	list<bigint>

	
unwrapped

	Completely unwrap this env.

	Returns

	The base non-wrapped gym.Env instance

	Return type

	gym.Env

	
class mushroom.environments.atari.LazyFrames(frames, history_length)

	Bases: object

From OpenAI Baseline.
https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py

	
__init__(frames, history_length)

	Initialize self. See help(type(self)) for accurate signature.

	
class mushroom.environments.atari.Atari(name, width=84, height=84, ends_at_life=False, max_pooling=True, history_length=4, max_no_op_actions=30)

	Bases: mushroom.environments.environment.Environment

The Atari environment as presented in:
“Human-level control through deep reinforcement learning”. Mnih et. al..
2015.

	
__init__(name, width=84, height=84, ends_at_life=False, max_pooling=True, history_length=4, max_no_op_actions=30)

	Constructor.

	Parameters

	
	name (str) – id name of the Atari game in Gym;

	width (int, 84) – width of the screen;

	height (int, 84) – height of the screen;

	ends_at_life (bool, False) – whether the episode ends when a life is
lost or not;

	max_pooling (bool, True) – whether to do max-pooling or
average-pooling of the last two frames when using NoFrameskip;

	history_length (int, 4) – number of frames to form a state;

	max_no_op_actions (int, 30) – maximum number of no-op action to
execute at the beginning of an episode.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
set_episode_end(ends_at_life)

	Setter.

	Parameters

	ends_at_life (bool) – whether the episode ends when a life is
lost or not.

Car on hill

	
class mushroom.environments.car_on_hill.CarOnHill(horizon=100, gamma=0.95)

	Bases: mushroom.environments.environment.Environment

The Car On Hill environment as presented in:
“Tree-Based Batch Mode Reinforcement Learning”. Ernst D. et al.. 2005.

	
__init__(horizon=100, gamma=0.95)

	Constructor.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

Finite MDP

	
class mushroom.environments.finite_mdp.FiniteMDP(p, rew, mu=None, gamma=0.9, horizon=inf)

	Bases: mushroom.environments.environment.Environment

Finite Markov Decision Process.

	
__init__(p, rew, mu=None, gamma=0.9, horizon=inf)

	Constructor.

	Parameters

	
	p (np.ndarray) – transition probability matrix;

	rew (np.ndarray) – reward matrix;

	mu (np.ndarray, None) – initial state probability distribution;

	gamma (float, 9) – discount factor;

	horizon (int, np.inf) – the horizon.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

Grid World

	
class mushroom.environments.grid_world.AbstractGridWorld(mdp_info, height, width, start, goal)

	Bases: mushroom.environments.environment.Environment

Abstract class to build a grid world.

	
__init__(mdp_info, height, width, start, goal)

	Constructor.

	Parameters

	
	height (int) – height of the grid;

	width (int) – width of the grid;

	start (tuple) – x-y coordinates of the goal;

	goal (tuple) – x-y coordinates of the goal.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
class mushroom.environments.grid_world.GridWorld(height, width, goal, start=(0, 0))

	Bases: mushroom.environments.grid_world.AbstractGridWorld

Standard grid world.

	
__init__(height, width, goal, start=(0, 0))

	Constructor.

	Parameters

	
	height (int) – height of the grid;

	width (int) – width of the grid;

	start (tuple) – x-y coordinates of the goal;

	goal (tuple) – x-y coordinates of the goal.

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
class mushroom.environments.grid_world.GridWorldVanHasselt(height=3, width=3, goal=(0, 2), start=(2, 0))

	Bases: mushroom.environments.grid_world.AbstractGridWorld

A variant of the grid world as presented in:
“Double Q-Learning”. Hasselt H. V.. 2010.

	
__init__(height=3, width=3, goal=(0, 2), start=(2, 0))

	Constructor.

	Parameters

	
	height (int) – height of the grid;

	width (int) – width of the grid;

	start (tuple) – x-y coordinates of the goal;

	goal (tuple) – x-y coordinates of the goal.

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

Gym

	
class mushroom.environments.gym_env.Gym(name, horizon, gamma)

	Bases: mushroom.environments.environment.Environment

Interface for OpenAI Gym environments. It makes it possible to use every
Gym environment just providing the id, except for the Atari games that
are managed in a separate class.

	
__init__(name, horizon, gamma)

	Constructor.

	Parameters

	
	name (str) – gym id of the environment;

	horizon (int) – the horizon;

	gamma (float) – the discount factor.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

Inverted pendulum

	
class mushroom.environments.inverted_pendulum.InvertedPendulum(random_start=False, m=1.0, l=1.0, g=9.8, mu=0.01, max_u=5.0, horizon=5000, gamma=0.99)

	Bases: mushroom.environments.environment.Environment

The Inverted Pendulum environment (continuous version) as presented in:
“Reinforcement Learning In Continuous Time and Space”. Doya K.. 2000.
“Off-Policy Actor-Critic”. Degris T. et al.. 2012.
“Deterministic Policy Gradient Algorithms”. Silver D. et al. 2014.

	
__init__(random_start=False, m=1.0, l=1.0, g=9.8, mu=0.01, max_u=5.0, horizon=5000, gamma=0.99)

	Constructor.

	Parameters

	
	random_start (bool, False) – whether to start from a random position
or from the horizontal one;

	m (float, 1.0) – mass of the pendulum;

	l (float, 1.0) – length of the pendulum;

	g (float, 9.8) – gravity acceleration constant;

	mu (float, 1e-2) – friction constant of the pendulum;

	max_u (float, 5.0) – maximum allowed input torque;

	horizon (int, 5000) – horizon of the problem;

	gamma (int, 99) – discount factor.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
class mushroom.environments.inverted_pendulum.InvertedPendulumDiscrete(m=2.0, M=8.0, l=0.5, g=9.8, mu=0.01, max_u=50.0, noise_u=10.0, horizon=3000, gamma=0.95)

	Bases: mushroom.environments.environment.Environment

The Inverted Pendulum environment as presented in:
“Least-Squares Policy Iteration”. Lagoudakis M. G. and Parr R.. 2003.

	
__init__(m=2.0, M=8.0, l=0.5, g=9.8, mu=0.01, max_u=50.0, noise_u=10.0, horizon=3000, gamma=0.95)

	Constructor.

	Parameters

	
	m (float, 2.0) – mass of the pendulum;

	M (float, 8.0) – mass of the cart;

	l (float, 5) – length of the pendulum;

	g (float, 9.8) – gravity acceleration constant;

	mu (float, 1e-2) – friction constant of the pendulum;

	max_u (float, 50.) – maximum allowed input torque;

	noise_u (float, 10.) – maximum noise on the action;

	horizon (int, 3000) – horizon of the problem;

	gamma (int, 95) – discount factor.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

LQR

	
class mushroom.environments.lqr.LQR(A, B, Q, R, random_init=False, gamma=0.9, horizon=50)

	Bases: mushroom.environments.environment.Environment

This class implements a Linear-Quadratic Regulator.
This task aims to minimize the undesired deviations from nominal values of
some controller settings in control problems.
The system equations in this task are:

\[x_{t+1} = Ax_t + Bu_t\]

where x is the state and u is the control signal.

The reward function is given by:

\[r_t = -\left(x_t^TQx_t + u_t^TRu_t \right)\]

“Policy gradient approaches for multi-objective sequential decision making”.
Parisi S., Pirotta M., Smacchia N., Bascetta L., Restelli M.. 2014

	
__init__(A, B, Q, R, random_init=False, gamma=0.9, horizon=50)

	Constructor.

	Args:

	A (np.ndarray): the state dynamics matrix;
B (np.ndarray): the action dynamics matrix;
Q (np.ndarray): reward weight matrix for state;
R (np.ndarray): reward weight matrix for action;
random_init (bool, False): start from a random state;
gamma (float, 0.9): discount factor;
horizon (int, 50): horizon of the mdp.

	
static generate(dimensions, eps=0.1, index=0, random_init=False, gamma=0.9, horizon=50)

	Factory method that generates an lqr with identity dynamics and
symmetric reward matrices.

	Parameters

	
	dimensions (int) – number of state-action dimensions;

	eps (double, 0.1) – reward matrix weights specifier;

	index (int, 0) – selector for the principal state;

	random_init (bool, False) – start from a random state;

	gamma (float, 0.9) – discount factor;

	horizon (int, 50) – horizon of the mdp.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

Mujoco

Segway

	
class mushroom.environments.segway.Segway(random_start=False)

	Bases: mushroom.environments.environment.Environment

The Segway environment (continuous version) as presented in:
“Deep Learning for Actor-Critic Reinforcement Learning”. Xueli Jia. 2015.

	
__init__(random_start=False)

	Constructor.

	Parameters

	random_start (bool, False) – whether to start from a random position
or from the horizontal one.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

Ship steering

	
class mushroom.environments.ship_steering.ShipSteering(small=True, n_steps_action=3)

	Bases: mushroom.environments.environment.Environment

The Ship Steering environment as presented in:
“Hierarchical Policy Gradient Algorithms”. Ghavamzadeh M. and Mahadevan S..
2013.

	
__init__(small=True, n_steps_action=3)

	Constructor.

	Parameters

	
	small (bool, True) – whether to use a small state space or not.

	n_steps_action (int, 3) – number of integration intervals for each
step of the mdp.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

Generators

Grid world

	
mushroom.environments.generators.grid_world.generate_grid_world(grid, prob, pos_rew, neg_rew, gamma=0.9, horizon=100)

	This Grid World generator requires a .txt file to specify the
shape of the grid world and the cells. There are five types of cells: ‘S’ is
the starting position where the agent is; ‘G’ is the goal state; ‘.’ is a
normal cell; ‘*’ is a hole, when the agent steps on a hole, it receives a
negative reward and the episode ends; ‘#’ is a wall, when the agent is
supposed to step on a wall, it actually remains in its current state. The
initial states distribution is uniform among all the initial states
provided.

The grid is expected to be rectangular.

	Parameters

	
	grid (str) – the path of the file containing the grid structure;

	prob (float) – probability of success of an action;

	pos_rew (float) – reward obtained in goal states;

	neg_rew (float) – reward obtained in “hole” states;

	gamma (float, 9) – discount factor;

	horizon (int, 100) – the horizon.

	Returns

	A FiniteMDP object built with the provided parameters.

	
mushroom.environments.generators.grid_world.parse_grid(grid)

	Parse the grid file:

	Parameters

	grid (str) – the path of the file containing the grid structure;

	Returns

	A list containing the grid structure.

	
mushroom.environments.generators.grid_world.compute_probabilities(grid_map, cell_list, prob)

	Compute the transition probability matrix.

	Parameters

	
	grid_map (list) – list containing the grid structure;

	cell_list (list) – list of non-wall cells;

	prob (float) – probability of success of an action.

	Returns

	The transition probability matrix;

	
mushroom.environments.generators.grid_world.compute_reward(grid_map, cell_list, pos_rew, neg_rew)

	Compute the reward matrix.

	Parameters

	
	grid_map (list) – list containing the grid structure;

	cell_list (list) – list of non-wall cells;

	pos_rew (float) – reward obtained in goal states;

	neg_rew (float) – reward obtained in “hole” states;

	Returns

	The reward matrix.

	
mushroom.environments.generators.grid_world.compute_mu(grid_map, cell_list)

	Compute the initial states distribution.

	Parameters

	
	grid_map (list) – list containing the grid structure;

	cell_list (list) – list of non-wall cells.

	Returns

	The initial states distribution.

Simple chain

	
mushroom.environments.generators.simple_chain.generate_simple_chain(state_n, goal_states, prob, rew, mu=None, gamma=0.9, horizon=100)

	Simple chain generator.

	Parameters

	
	state_n (int) – number of states;

	goal_states (list) – list of goal states;

	prob (float) – probability of success of an action;

	rew (float) – reward obtained in goal states;

	mu (np.ndarray) – initial state probability distribution;

	gamma (float, 9) – discount factor;

	horizon (int, 100) – the horizon.

	Returns

	A FiniteMDP object built with the provided parameters.

	
mushroom.environments.generators.simple_chain.compute_probabilities(state_n, prob)

	Compute the transition probability matrix.

	Parameters

	
	state_n (int) – number of states;

	prob (float) – probability of success of an action.

	Returns

	The transition probability matrix;

	
mushroom.environments.generators.simple_chain.compute_reward(state_n, goal_states, rew)

	Compute the reward matrix.

	Parameters

	
	state_n (int) – number of states;

	goal_states (list) – list of goal states;

	rew (float) – reward obtained in goal states.

	Returns

	The reward matrix.

Taxi

	
mushroom.environments.generators.taxi.generate_taxi(grid, prob=0.9, rew=(0, 1, 3, 15), gamma=0.99, horizon=inf)

	This Taxi generator requires a .txt file to specify the shape of the grid
world and the cells. There are five types of cells: ‘S’ is the starting
where the agent is; ‘G’ is the goal state; ‘.’ is a normal cell; ‘F’ is a
passenger, when the agent steps on a hole, it picks up it.
‘#’ is a wall, when the agent is supposed to step on a wall, it actually
remains in its current state. The initial states distribution is uniform
among all the initial states provided. The episode terminates when the agent
reaches the goal state. The reward is always 0, except for the goal state
where it depends on the number of collected passengers. Each action has
a certain probability of success and, if it fails, the agent goes in a
perpendicular direction from the supposed one.

The grid is expected to be rectangular.

This problem is inspired from:
“Bayesian Q-Learning”. Dearden R. et al.. 1998.

	Parameters

	
	grid (str) – the path of the file containing the grid structure;

	prob (float, 9) – probability of success of an action;

	rew (tuple, (0, 1, 3, 15)) – rewards obtained in goal states;

	gamma (float, 99) – discount factor;

	horizon (int, np.inf) – the horizon.

	Returns

	A FiniteMDP object built with the provided parameters.

	
mushroom.environments.generators.taxi.parse_grid(grid)

	Parse the grid file:

	Parameters

	grid (str) – the path of the file containing the grid structure.

	Returns

	A list containing the grid structure.

	
mushroom.environments.generators.taxi.compute_probabilities(grid_map, cell_list, passenger_list, prob)

	Compute the transition probability matrix.

	Parameters

	
	grid_map (list) – list containing the grid structure;

	cell_list (list) – list of non-wall cells;

	passenger_list (list) – list of passenger cells;

	prob (float) – probability of success of an action.

	Returns

	The transition probability matrix;

	
mushroom.environments.generators.taxi.compute_reward(grid_map, cell_list, passenger_list, rew)

	Compute the reward matrix.

	Parameters

	
	grid_map (list) – list containing the grid structure;

	cell_list (list) – list of non-wall cells;

	passenger_list (list) – list of passenger cells;

	rew (tuple) – rewards obtained in goal states.

	Returns

	The reward matrix.

	
mushroom.environments.generators.taxi.compute_mu(grid_map, cell_list, passenger_list)

	Compute the initial states distribution.

	Parameters

	
	grid_map (list) – list containing the grid structure;

	cell_list (list) – list of non-wall cells;

	passenger_list (list) – list of passenger cells.

	Returns

	The initial states distribution.

Algorithms

Mushroom provides the implementations of several algorithms belonging to all
categories of RL:

	value-based;

	policy-search;

	actor-critic.

One can easily implement customized algorithms following the structure of the
already available ones.

Agent

	
class mushroom.algorithms.agent.Agent(policy, mdp_info, features=None)

	Bases: object

This class implements the functions to manage the agent (e.g. move the agent
following its policy).

	
__init__(policy, mdp_info, features=None)

	Constructor.

	Parameters

	
	policy (Policy) – the policy followed by the agent;

	mdp_info (MDPInfo) – information about the MDP;

	features (object, None) – features to extract from the state.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

Subpackages

	Value
	TD

	Batch TD

	DQN

	Policy search
	Policy gradient

	Black-Box optimization

	Actor-Critic
	Deterministic Policy Gradient

	Deep Deterministic Policy Gradient

	Stochastic Actor-Critic

Value

TD

	
class mushroom.algorithms.value.td.TD(approximator, policy, mdp_info, learning_rate, features=None)

	Bases: mushroom.algorithms.agent.Agent

Implements functions to run TD algorithms.

	
__init__(approximator, policy, mdp_info, learning_rate, features=None)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	learning_rate (Parameter) – the learning rate.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.td.QLearning(policy, mdp_info, learning_rate)

	Bases: mushroom.algorithms.value.td.TD

Q-Learning algorithm.
“Learning from Delayed Rewards”. Watkins C.J.C.H.. 1989.

	
__init__(policy, mdp_info, learning_rate)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	learning_rate (Parameter) – the learning rate.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.td.DoubleQLearning(policy, mdp_info, learning_rate)

	Bases: mushroom.algorithms.value.td.TD

Double Q-Learning algorithm.
“Double Q-Learning”. Hasselt H. V.. 2010.

	
__init__(policy, mdp_info, learning_rate)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	learning_rate (Parameter) – the learning rate.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.td.WeightedQLearning(policy, mdp_info, learning_rate, sampling=True, precision=1000, weighted_policy=False)

	Bases: mushroom.algorithms.value.td.TD

Weighted Q-Learning algorithm.
“Estimating the Maximum Expected Value through Gaussian Approximation”.
D’Eramo C. et. al.. 2016.

	
__init__(policy, mdp_info, learning_rate, sampling=True, precision=1000, weighted_policy=False)

	Constructor.

	Parameters

	
	sampling (bool, True) – use the approximated version to speed up
the computation;

	precision (int, 1000) – number of samples to use in the approximated
version;

	weighted_policy (bool, False) – whether to use the weighted policy
or not.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
_next_q(next_state)

	
	Parameters

	next_state (np.ndarray) – the state where next action has to be
evaluated.

	Returns

	The weighted estimator value in next_state.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.td.SpeedyQLearning(policy, mdp_info, learning_rate)

	Bases: mushroom.algorithms.value.td.TD

Speedy Q-Learning algorithm.
“Speedy Q-Learning”. Ghavamzadeh et. al.. 2011.

	
__init__(policy, mdp_info, learning_rate)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	learning_rate (Parameter) – the learning rate.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.td.SARSA(policy, mdp_info, learning_rate)

	Bases: mushroom.algorithms.value.td.TD

SARSA algorithm.

	
__init__(policy, mdp_info, learning_rate)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	learning_rate (Parameter) – the learning rate.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.td.SARSALambdaDiscrete(policy, mdp_info, learning_rate, lambda_coeff, trace='replacing')

	Bases: mushroom.algorithms.value.td.TD

Discrete version of SARSA(lambda) algorithm.

	
__init__(policy, mdp_info, learning_rate, lambda_coeff, trace='replacing')

	Constructor.

	Parameters

	
	lambda_coeff (float) – eligibility trace coefficient;

	trace (str, 'replacing') – type of eligibility trace to use.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
episode_start()

	Called by the agent when a new episode starts.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.td.SARSALambdaContinuous(approximator, policy, mdp_info, learning_rate, lambda_coeff, features, approximator_params=None)

	Bases: mushroom.algorithms.value.td.TD

Continuous version of SARSA(lambda) algorithm.

	
__init__(approximator, policy, mdp_info, learning_rate, lambda_coeff, features, approximator_params=None)

	Constructor.

	Parameters

	lambda_coeff (float) – eligibility trace coefficient.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
episode_start()

	Called by the agent when a new episode starts.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.td.ExpectedSARSA(policy, mdp_info, learning_rate)

	Bases: mushroom.algorithms.value.td.TD

Expected SARSA algorithm.
“A theoretical and empirical analysis of Expected Sarsa”. Seijen H. V. et
al.. 2009.

	
__init__(policy, mdp_info, learning_rate)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	learning_rate (Parameter) – the learning rate.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.td.TrueOnlineSARSALambda(policy, mdp_info, learning_rate, lambda_coeff, features, approximator_params=None)

	Bases: mushroom.algorithms.value.td.TD

True Online SARSA(lambda) with linear function approximation.
“True Online TD(lambda)”. Seijen H. V. et al.. 2014.

	
__init__(policy, mdp_info, learning_rate, lambda_coeff, features, approximator_params=None)

	Constructor.

	Parameters

	lambda_coeff (float) – eligibility trace coefficient.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
episode_start()

	Called by the agent when a new episode starts.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.td.RLearning(policy, mdp_info, learning_rate, beta)

	Bases: mushroom.algorithms.value.td.TD

R-Learning algorithm.
“A Reinforcement Learning Method for Maximizing Undiscounted Rewards”.
Schwartz A.. 1993.

	
__init__(policy, mdp_info, learning_rate, beta)

	Constructor.

	Parameters

	beta (Parameter) – beta coefficient.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.td.RQLearning(policy, mdp_info, learning_rate, off_policy=False, beta=None, delta=None)

	Bases: mushroom.algorithms.value.td.TD

RQ-Learning algorithm.
“Exploiting Structure and Uncertainty of Bellman Updates in Markov Decision
Processes”. Tateo D. et al.. 2017.

	
__init__(policy, mdp_info, learning_rate, off_policy=False, beta=None, delta=None)

	Constructor.

	Parameters

	
	off_policy (bool, False) – whether to use the off policy setting or
the online one;

	beta (Parameter, None) – beta coefficient;

	delta (Parameter, None) – delta coefficient.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
_next_q(next_state)

	
	Parameters

	next_state (np.ndarray) – the state where next action has to be
evaluated.

	Returns

	The weighted estimator value in ‘next_state’.

Batch TD

	
class mushroom.algorithms.value.batch_td.BatchTD(approximator, policy, mdp_info, fit_params=None, approximator_params=None, features=None)

	Bases: mushroom.algorithms.agent.Agent

Abstract class to implement a generic Batch TD algorithm.

	
__init__(approximator, policy, mdp_info, fit_params=None, approximator_params=None, features=None)

	Constructor.

	Parameters

	
	approximator (object) – approximator used by the algorithm and the
policy.

	fit_params (dict, None) – parameters of the fitting algorithm of the
approximator;

	approximator_params (dict, None) – parameters of the approximator to
build;

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.batch_td.FQI(approximator, policy, mdp_info, n_iterations, fit_params=None, approximator_params=None, quiet=False, boosted=False)

	Bases: mushroom.algorithms.value.batch_td.BatchTD

Fitted Q-Iteration algorithm.
“Tree-Based Batch Mode Reinforcement Learning”, Ernst D. et al.. 2005.

	
__init__(approximator, policy, mdp_info, n_iterations, fit_params=None, approximator_params=None, quiet=False, boosted=False)

	Constructor.

	Parameters

	
	n_iterations (int) – number of iterations to perform for training;

	quiet (bool, False) – whether to show the progress bar or not;

	boosted (bool, False) – whether to use boosted FQI or not.

	
fit(dataset)

	Fit loop.

	
_fit(x)

	Single fit iteration.

	Parameters

	x (list) – the dataset.

	
_fit_boosted(x)

	Single fit iteration for boosted FQI.

	Parameters

	x (list) – the dataset.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.batch_td.DoubleFQI(approximator, policy, mdp_info, n_iterations, fit_params=None, approximator_params=None, quiet=False)

	Bases: mushroom.algorithms.value.batch_td.FQI

Double Fitted Q-Iteration algorithm.
“Estimating the Maximum Expected Value in Continuous Reinforcement Learning
Problems”. D’Eramo C. et al.. 2017.

	
__init__(approximator, policy, mdp_info, n_iterations, fit_params=None, approximator_params=None, quiet=False)

	Constructor.

	Parameters

	
	n_iterations (int) – number of iterations to perform for training;

	quiet (bool, False) – whether to show the progress bar or not;

	boosted (bool, False) – whether to use boosted FQI or not.

	
_fit(x)

	Single fit iteration.

	Parameters

	x (list) – the dataset.

	
_fit_boosted(x)

	Single fit iteration for boosted FQI.

	Parameters

	x (list) – the dataset.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit loop.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.batch_td.LSPI(policy, mdp_info, epsilon=0.01, fit_params=None, approximator_params=None, features=None)

	Bases: mushroom.algorithms.value.batch_td.BatchTD

Least-Squares Policy Iteration algorithm.
“Least-Squares Policy Iteration”. Lagoudakis M. G. and Parr R.. 2003.

	
__init__(policy, mdp_info, epsilon=0.01, fit_params=None, approximator_params=None, features=None)

	Constructor.

	Parameters

	
	approximator (object) – approximator used by the algorithm and the
policy.

	fit_params (dict, None) – parameters of the fitting algorithm of the
approximator;

	approximator_params (dict, None) – parameters of the approximator to
build;

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

DQN

	
class mushroom.algorithms.value.dqn.DQN(approximator, policy, mdp_info, batch_size, approximator_params, target_update_frequency, replay_memory=None, initial_replay_size=500, max_replay_size=5000, fit_params=None, n_approximators=1, clip_reward=True)

	Bases: mushroom.algorithms.agent.Agent

Deep Q-Network algorithm.
“Human-Level Control Through Deep Reinforcement Learning”.
Mnih V. et al.. 2015.

	
__init__(approximator, policy, mdp_info, batch_size, approximator_params, target_update_frequency, replay_memory=None, initial_replay_size=500, max_replay_size=5000, fit_params=None, n_approximators=1, clip_reward=True)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	batch_size (int) – the number of samples in a batch;

	approximator_params (dict) – parameters of the approximator to
build;

	target_update_frequency (int) – the number of samples collected
between each update of the target network;

	replay_memory ([ReplayMemory, PrioritizedReplayMemory], None) – the
object of the replay memory to use; if None, a default replay
memory is created;

	initial_replay_size (int) – the number of samples to collect before
starting the learning;

	max_replay_size (int) – the maximum number of samples in the replay
memory;

	fit_params (dict, None) – parameters of the fitting algorithm of the
approximator;

	n_approximators (int, 1) – the number of approximator to use in
AverageDQN;

	clip_reward (bool, True) – whether to clip the reward or not.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_update_target()

	Update the target network.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Maximum action-value for each state in next_state.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.dqn.DoubleDQN(approximator, policy, mdp_info, batch_size, approximator_params, target_update_frequency, replay_memory=None, initial_replay_size=500, max_replay_size=5000, fit_params=None, n_approximators=1, clip_reward=True)

	Bases: mushroom.algorithms.value.dqn.DQN

Double DQN algorithm.
“Deep Reinforcement Learning with Double Q-Learning”.
Hasselt H. V. et al.. 2016.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Maximum action-value for each state in next_state.

	
__init__(approximator, policy, mdp_info, batch_size, approximator_params, target_update_frequency, replay_memory=None, initial_replay_size=500, max_replay_size=5000, fit_params=None, n_approximators=1, clip_reward=True)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	batch_size (int) – the number of samples in a batch;

	approximator_params (dict) – parameters of the approximator to
build;

	target_update_frequency (int) – the number of samples collected
between each update of the target network;

	replay_memory ([ReplayMemory, PrioritizedReplayMemory], None) – the
object of the replay memory to use; if None, a default replay
memory is created;

	initial_replay_size (int) – the number of samples to collect before
starting the learning;

	max_replay_size (int) – the maximum number of samples in the replay
memory;

	fit_params (dict, None) – parameters of the fitting algorithm of the
approximator;

	n_approximators (int, 1) – the number of approximator to use in
AverageDQN;

	clip_reward (bool, True) – whether to clip the reward or not.

	
_update_target()

	Update the target network.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.dqn.AveragedDQN(approximator, policy, mdp_info, **params)

	Bases: mushroom.algorithms.value.dqn.DQN

Averaged-DQN algorithm.
“Averaged-DQN: Variance Reduction and Stabilization for Deep Reinforcement
Learning”. Anschel O. et al.. 2017.

	
__init__(approximator, policy, mdp_info, **params)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	batch_size (int) – the number of samples in a batch;

	approximator_params (dict) – parameters of the approximator to
build;

	target_update_frequency (int) – the number of samples collected
between each update of the target network;

	replay_memory ([ReplayMemory, PrioritizedReplayMemory], None) – the
object of the replay memory to use; if None, a default replay
memory is created;

	initial_replay_size (int) – the number of samples to collect before
starting the learning;

	max_replay_size (int) – the maximum number of samples in the replay
memory;

	fit_params (dict, None) – parameters of the fitting algorithm of the
approximator;

	n_approximators (int, 1) – the number of approximator to use in
AverageDQN;

	clip_reward (bool, True) – whether to clip the reward or not.

	
_update_target()

	Update the target network.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Maximum action-value for each state in next_state.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.value.dqn.CategoricalNetwork(input_shape, output_shape, features_network, n_atoms, v_min, v_max, n_features, use_cuda, **kwargs)

	Bases: sphinx.ext.autodoc.importer._MockObject

	
__init__(input_shape, output_shape, features_network, n_atoms, v_min, v_max, n_features, use_cuda, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__call__(*args, **kw)

	Call self as a function.

	
class mushroom.algorithms.value.dqn.CategoricalDQN(policy, mdp_info, n_atoms, v_min, v_max, approximator_params, **params)

	Bases: mushroom.algorithms.value.dqn.DQN

Categorical DQN algorithm.
“A Distributional Perspective on Reinforcement Learning”.
Bellemare M. et al.. 2017.

	
__init__(policy, mdp_info, n_atoms, v_min, v_max, approximator_params, **params)

	Constructor.

	Parameters

	
	n_atoms (int) – number of atoms;

	v_min (float) – minimum value of value-function;

	v_max (float) – maximum value of value-function.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Maximum action-value for each state in next_state.

	
_update_target()

	Update the target network.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

Policy search

Policy gradient

	
class mushroom.algorithms.policy_search.policy_gradient.PolicyGradient(policy, mdp_info, learning_rate, features)

	Bases: mushroom.algorithms.agent.Agent

Abstract class to implement a generic Policy Search algorithm using the
gradient of the policy to update its parameters.
“A survey on Policy Gradient algorithms for Robotics”. Deisenroth M. P. et
al.. 2011.

	
__init__(policy, mdp_info, learning_rate, features)

	Constructor.

	Parameters

	learning_rate (float) – the learning rate.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_update_parameters(J)

	Update the parameters of the policy.

	Parameters

	J (list) – list of the cumulative discounted rewards for each
episode in the dataset.

	
_init_update()

	This function is called, when parsing the dataset, at the beginning
of each episode. The implementation is dependent on the algorithm (e.g.
REINFORCE resets some data structure).

	
_step_update(x, u, r)

	This function is called, when parsing the dataset, at each episode step.

	Parameters

	
	x (np.ndarray) – the state at the current step;

	u (np.ndarray) – the action at the current step;

	r (np.ndarray) – the reward at the current step.

	
_episode_end_update()

	This function is called, when parsing the dataset, at the beginning
of each episode. The implementation is dependent on the algorithm (e.g.
REINFORCE updates some data structures).

	
_compute_gradient(J)

	Return the gradient computed by the algorithm.

	Parameters

	J (list) – list of the cumulative discounted rewards for each
episode in the dataset.

	
_parse(sample)

	Utility to parse the sample.

	Parameters

	sample (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag. If provided, state is preprocessed with the features.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.policy_search.policy_gradient.REINFORCE(policy, mdp_info, learning_rate, features=None)

	Bases: mushroom.algorithms.policy_search.policy_gradient.PolicyGradient

REINFORCE algorithm.
“Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning”, Williams R. J.. 1992.

	
__init__(policy, mdp_info, learning_rate, features=None)

	Constructor.

	Parameters

	learning_rate (float) – the learning rate.

	
_compute_gradient(J)

	Return the gradient computed by the algorithm.

	Parameters

	J (list) – list of the cumulative discounted rewards for each
episode in the dataset.

	
_step_update(x, u, r)

	This function is called, when parsing the dataset, at each episode step.

	Parameters

	
	x (np.ndarray) – the state at the current step;

	u (np.ndarray) – the action at the current step;

	r (np.ndarray) – the reward at the current step.

	
_episode_end_update()

	This function is called, when parsing the dataset, at the beginning
of each episode. The implementation is dependent on the algorithm (e.g.
REINFORCE updates some data structures).

	
_init_update()

	This function is called, when parsing the dataset, at the beginning
of each episode. The implementation is dependent on the algorithm (e.g.
REINFORCE resets some data structure).

	
_parse(sample)

	Utility to parse the sample.

	Parameters

	sample (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag. If provided, state is preprocessed with the features.

	
_update_parameters(J)

	Update the parameters of the policy.

	Parameters

	J (list) – list of the cumulative discounted rewards for each
episode in the dataset.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.policy_search.policy_gradient.GPOMDP(policy, mdp_info, learning_rate, features=None)

	Bases: mushroom.algorithms.policy_search.policy_gradient.PolicyGradient

GPOMDP algorithm.
“Infinite-Horizon Policy-Gradient Estimation”. Baxter J. and Bartlett P. L..
2001.

	
__init__(policy, mdp_info, learning_rate, features=None)

	Constructor.

	Parameters

	learning_rate (float) – the learning rate.

	
_compute_gradient(J)

	Return the gradient computed by the algorithm.

	Parameters

	J (list) – list of the cumulative discounted rewards for each
episode in the dataset.

	
_step_update(x, u, r)

	This function is called, when parsing the dataset, at each episode step.

	Parameters

	
	x (np.ndarray) – the state at the current step;

	u (np.ndarray) – the action at the current step;

	r (np.ndarray) – the reward at the current step.

	
_episode_end_update()

	This function is called, when parsing the dataset, at the beginning
of each episode. The implementation is dependent on the algorithm (e.g.
REINFORCE updates some data structures).

	
_init_update()

	This function is called, when parsing the dataset, at the beginning
of each episode. The implementation is dependent on the algorithm (e.g.
REINFORCE resets some data structure).

	
_parse(sample)

	Utility to parse the sample.

	Parameters

	sample (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag. If provided, state is preprocessed with the features.

	
_update_parameters(J)

	Update the parameters of the policy.

	Parameters

	J (list) – list of the cumulative discounted rewards for each
episode in the dataset.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.policy_search.policy_gradient.eNAC(policy, mdp_info, learning_rate, features=None, critic_features=None)

	Bases: mushroom.algorithms.policy_search.policy_gradient.PolicyGradient

Episodic Natural Actor Critic algorithm.
“A Survey on Policy Search for Robotics”, Deisenroth M. P., Neumann G.,
Peters J. 2013.

	
__init__(policy, mdp_info, learning_rate, features=None, critic_features=None)

	Constructor.

	Parameters

	critic_features (Features, None) – features used by the critic.

	
_compute_gradient(J)

	Return the gradient computed by the algorithm.

	Parameters

	J (list) – list of the cumulative discounted rewards for each
episode in the dataset.

	
_step_update(x, u, r)

	This function is called, when parsing the dataset, at each episode step.

	Parameters

	
	x (np.ndarray) – the state at the current step;

	u (np.ndarray) – the action at the current step;

	r (np.ndarray) – the reward at the current step.

	
_episode_end_update()

	This function is called, when parsing the dataset, at the beginning
of each episode. The implementation is dependent on the algorithm (e.g.
REINFORCE updates some data structures).

	
_init_update()

	This function is called, when parsing the dataset, at the beginning
of each episode. The implementation is dependent on the algorithm (e.g.
REINFORCE resets some data structure).

	
_parse(sample)

	Utility to parse the sample.

	Parameters

	sample (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag. If provided, state is preprocessed with the features.

	
_update_parameters(J)

	Update the parameters of the policy.

	Parameters

	J (list) – list of the cumulative discounted rewards for each
episode in the dataset.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

Black-Box optimization

	
class mushroom.algorithms.policy_search.black_box_optimization.BlackBoxOptimization(distribution, policy, mdp_info, features=None)

	Bases: mushroom.algorithms.agent.Agent

Base class for black box optimization algorithms.
These algorithms work on a distribution of policy parameters and often they
do not rely on stochastic and differentiable policies.

	
__init__(distribution, policy, mdp_info, features=None)

	Constructor.

	Parameters

	
	distribution (Distribution) – the distribution of policy parameters;

	policy (ParametricPolicy) – the policy to use.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
_update(Jep, theta)

	Function that implements the update routine of distribution parameters.
Every black box algorithms should implement this function with the
proper update.

	Parameters

	
	Jep (np.ndarray) – a vector containing the J of the considered
trajectories;

	theta (np.ndarray) – a matrix of policy parameters of the considered
trajectories.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
class mushroom.algorithms.policy_search.black_box_optimization.RWR(distribution, policy, mdp_info, beta, features=None)

	Bases: mushroom.algorithms.policy_search.black_box_optimization.BlackBoxOptimization

Reward-Weighted Regression algorithm.
“A Survey on Policy Search for Robotics”, Deisenroth M. P., Neumann G.,
Peters J.. 2013.

	
__init__(distribution, policy, mdp_info, beta, features=None)

	Constructor.

	Parameters

	beta (float) – the temperature for the exponential reward
transformation.

	
_update(Jep, theta)

	Function that implements the update routine of distribution parameters.
Every black box algorithms should implement this function with the
proper update.

	Parameters

	
	Jep (np.ndarray) – a vector containing the J of the considered
trajectories;

	theta (np.ndarray) – a matrix of policy parameters of the considered
trajectories.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.policy_search.black_box_optimization.PGPE(distribution, policy, mdp_info, learning_rate, features=None)

	Bases: mushroom.algorithms.policy_search.black_box_optimization.BlackBoxOptimization

Policy Gradient with Parameter Exploration algorithm.
“A Survey on Policy Search for Robotics”, Deisenroth M. P., Neumann G.,
Peters J.. 2013.

	
__init__(distribution, policy, mdp_info, learning_rate, features=None)

	Constructor.

	Parameters

	learning_rate (Parameter) – the learning rate for the gradient step.

	
_update(Jep, theta)

	Function that implements the update routine of distribution parameters.
Every black box algorithms should implement this function with the
proper update.

	Parameters

	
	Jep (np.ndarray) – a vector containing the J of the considered
trajectories;

	theta (np.ndarray) – a matrix of policy parameters of the considered
trajectories.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.policy_search.black_box_optimization.REPS(distribution, policy, mdp_info, eps, features=None)

	Bases: mushroom.algorithms.policy_search.black_box_optimization.BlackBoxOptimization

Episodic Relative Entropy Policy Search algorithm.
“A Survey on Policy Search for Robotics”, Deisenroth M. P., Neumann G.,
Peters J.. 2013.

	
__init__(distribution, policy, mdp_info, eps, features=None)

	Constructor.

	Parameters

	eps (float) – the maximum admissible value for the Kullback-Leibler
divergence between the new distribution and the
previous one at each update step.

	
_update(Jep, theta)

	Function that implements the update routine of distribution parameters.
Every black box algorithms should implement this function with the
proper update.

	Parameters

	
	Jep (np.ndarray) – a vector containing the J of the considered
trajectories;

	theta (np.ndarray) – a matrix of policy parameters of the considered
trajectories.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

Actor-Critic

Deterministic Policy Gradient

	
class mushroom.algorithms.actor_critic.dpg.COPDAC_Q(policy, mu, mdp_info, alpha_theta, alpha_omega, alpha_v, value_function_features=None, policy_features=None)

	Bases: mushroom.algorithms.agent.Agent

Compatible off-policy deterministic actor-critic algorithm.
“Deterministic Policy Gradient Algorithms”.
Silver D. et al.. 2014.

	
__init__(policy, mu, mdp_info, alpha_theta, alpha_omega, alpha_v, value_function_features=None, policy_features=None)

	Constructor.

	Parameters

	
	policy (Policy) – the policy followed by the agent;

	mdp_info (MDPInfo) – information about the MDP;

	features (object, None) – features to extract from the state.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

Deep Deterministic Policy Gradient

	
class mushroom.algorithms.actor_critic.ddpg.ActorLoss(critic)

	Bases: sphinx.ext.autodoc.importer._MockObject

Class used to implement the loss function of the actor.

	
__init__(critic)

	Initialize self. See help(type(self)) for accurate signature.

	
__call__(*args, **kw)

	Call self as a function.

	
class mushroom.algorithms.actor_critic.ddpg.ActorLossTD3(critic)

	Bases: sphinx.ext.autodoc.importer._MockObject

Class used to implement the loss function of the actor.

	
__init__(critic)

	Initialize self. See help(type(self)) for accurate signature.

	
__call__(*args, **kw)

	Call self as a function.

	
class mushroom.algorithms.actor_critic.ddpg.DDPG(actor_approximator, critic_approximator, policy_class, mdp_info, batch_size, initial_replay_size, max_replay_size, tau, actor_params, critic_params, policy_params, policy_delay=1, actor_fit_params=None, critic_fit_params=None)

	Bases: mushroom.algorithms.agent.Agent

Deep Deterministic Policy Gradient algorithm.
“Continuous Control with Deep Reinforcement Learning”.
Lillicrap T. P. et al.. 2016.

	
__init__(actor_approximator, critic_approximator, policy_class, mdp_info, batch_size, initial_replay_size, max_replay_size, tau, actor_params, critic_params, policy_params, policy_delay=1, actor_fit_params=None, critic_fit_params=None)

	Constructor.

	Parameters

	
	actor_approximator (object) – the approximator to use for the actor;

	critic_approximator (object) – the approximator to use for the
critic;

	policy_class (Policy) – class of the policy;

	batch_size (int) – the number of samples in a batch;

	initial_replay_size (int) – the number of samples to collect before
starting the learning;

	max_replay_size (int) – the maximum number of samples in the replay
memory;

	tau (float) – value of coefficient for soft updates;

	actor_params (dict) – parameters of the actor approximator to
build;

	critic_params (dict) – parameters of the critic approximator to
build;

	policy_params (dict) – parameters of the policy to build;

	policy_delay (int, 1) – the number of updates of the critic after
which an actor update is implemented;

	actor_fit_params (dict, None) – parameters of the fitting algorithm
of the actor approximator;

	critic_fit_params (dict, None) – parameters of the fitting algorithm
of the critic approximator;

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_init_target()

	Init weights for target approximators

	
_update_target()

	Update the target networks.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Action-values returned by the critic for next_state and the
action returned by the actor.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.actor_critic.ddpg.TD3(actor_approximator, critic_approximator, policy_class, mdp_info, batch_size, initial_replay_size, max_replay_size, tau, actor_params, critic_params, policy_params, policy_delay=2, noise_std=0.2, noise_clip=0.5, actor_fit_params=None, critic_fit_params=None)

	Bases: mushroom.algorithms.actor_critic.ddpg.DDPG

Twin Delayed DDPG algorithm.
“Addressing Function Approximation Error in Actor-Critic Methods”.
Fujimoto S. et al.. 2018.

	
__init__(actor_approximator, critic_approximator, policy_class, mdp_info, batch_size, initial_replay_size, max_replay_size, tau, actor_params, critic_params, policy_params, policy_delay=2, noise_std=0.2, noise_clip=0.5, actor_fit_params=None, critic_fit_params=None)

	Constructor.

	Parameters

	
	actor_approximator (object) – the approximator to use for the actor;

	critic_approximator (object) – the approximator to use for the
critic;

	policy_class (Policy) – class of the policy;

	batch_size (int) – the number of samples in a batch;

	initial_replay_size (int) – the number of samples to collect before
starting the learning;

	max_replay_size (int) – the maximum number of samples in the replay
memory;

	tau (float) – value of coefficient for soft updates;

	actor_params (dict) – parameters of the actor approximator to
build;

	critic_params (dict) – parameters of the critic approximator to
build;

	policy_params (dict) – parameters of the policy to build;

	policy_delay (int, 2) – the number of updates of the critic after
which an actor update is implemented;

	noise_std (float, 0.2) – standard deviation of the noise used for policy
smoothing;

	noise_clip (float, 0.5) – maximum absolute value for policy smoothing noise;

	actor_fit_params (dict, None) – parameters of the fitting algorithm
of the actor approximator;

	critic_fit_params (dict, None) – parameters of the fitting algorithm
of the critic approximator;

	
_init_target()

	Init weights for target approximators

	
_update_target()

	Update the target networks.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Action-values returned by the critic for next_state and the
action returned by the actor.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

Stochastic Actor-Critic

	
class mushroom.algorithms.actor_critic.stochastic_actor_critic.SAC(policy, mdp_info, alpha_theta, alpha_v, lambda_par=0.9, value_function_features=None, policy_features=None)

	Bases: mushroom.algorithms.agent.Agent

Stochastic Actor critic in the episodic setting as presented in:
“Model-Free Reinforcement Learning with Continuous Action in Practice”.
Degris T. et al.. 2012.

	
__init__(policy, mdp_info, alpha_theta, alpha_v, lambda_par=0.9, value_function_features=None, policy_features=None)

	Constructor.

	Parameters

	
	policy (ParametricPolicy) – a differentiable stochastic policy;

	mdp_info – information about the MDP;

	alpha_theta (Parameter) – learning rate for policy update;

	alpha_v (Parameter) – learning rate for the value function;

	lambda_par (float, 0.9) – trace decay parameter;

	value_function_features (Features, None) – features used by the value
function approximator;

	policy_features (Features, None) – features used by the policy.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class mushroom.algorithms.actor_critic.stochastic_actor_critic.SAC_AVG(policy, mdp_info, alpha_theta, alpha_v, alpha_r, lambda_par=0.9, value_function_features=None, policy_features=None)

	Bases: mushroom.algorithms.agent.Agent

Stochastic Actor critic in the average reward setting as presented in:
“Model-Free Reinforcement Learning with Continuous Action in Practice”.
Degris T. et al.. 2012.

	
__init__(policy, mdp_info, alpha_theta, alpha_v, alpha_r, lambda_par=0.9, value_function_features=None, policy_features=None)

	Constructor.

	Parameters

	
	policy (ParametricPolicy) – a differentiable stochastic policy;

	mdp_info – information about the MDP;

	alpha_theta (Parameter) – learning rate for policy update;

	alpha_v (Parameter) – learning rate for the value function;

	alpha_r (Parameter) – learning rate for the reward trace;

	lambda_par (float, 0.9) – trace decay parameter;

	value_function_features (Features, None) – features used by the
value function approximator;

	policy_features (Features, None) – features used by the policy.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

Approximators

Mushroom exposes the high-level class Regressor that can manage any type of
function regressor. This class is a wrapper for any kind of function
approximator, e.g. a scikit-learn approximator or a pytorch neural network.

Regressor

	
class mushroom.approximators.regressor.Regressor(approximator, input_shape, output_shape=(1,), n_actions=None, n_models=1, **params)

	Bases: object

This class implements the function to manage a function approximator. This
class selects the appropriate kind of regressor to implement according to
the parameters provided by the user; this makes this class the only one to
use for each kind of task that has to be performed.
The inference of the implementation to choose is done checking the provided
values of parameters n_actions.
If n_actions is provided, it means that the user wants to implement an
approximator of the Q-function: if the value of n_actions is equal to
the output_shape then a QRegressor is created, else
(output_shape should be (1,)) an ActionRegressor is created.
Else a GenericRegressor is created.
An Ensemble model can be used for all the previous implementations
listed before simply providing a n_models parameter greater than 1.

	
__init__(approximator, input_shape, output_shape=(1,), n_actions=None, n_models=1, **params)

	Constructor.

	Parameters

	
	approximator (object) – the approximator class to use to create
the model;

	input_shape (tuple) – the shape of the input of the model;

	output_shape (tuple, (1,)) – the shape of the output of the model;

	n_actions (int, None) – number of actions considered to create a
QRegressor or an ActionRegressor;

	n_models (int, 1) – number of models to create;

	**params (dict) – other parameters to create each model.

	
__call__(*z, **predict_params)

	Call self as a function.

	
fit(*z, **fit_params)

	Fit the model.

	Parameters

	
	*z (list) – list of input of the model;

	**fit_params (dict) – parameters to use to fit the model.

	
predict(*z, **predict_params)

	Predict the output of the model given an input.

	Parameters

	
	*z (list) – list of input of the model;

	**predict_params (dict) – parameters to use to predict with the model.

	Returns

	The model prediction.

	
model

	The model object.

	Type

	Returns

	
reset()

	Reset the model parameters.

	
input_shape

	The shape of the input of the model.

	Type

	Returns

	
output_shape

	The shape of the output of the model.

	Type

	Returns

	
weights_size

	The shape of the weights of the model.

	Type

	Returns

	
get_weights()

	
	Returns

	The weights of the model.

	
set_weights(w)

	
	Parameters

	w (list) – list of weights to be set in the model.

	
diff(*z)

	
	Parameters

	*z (list) – the input of the model.

	Returns

	The derivative of the model.

Approximator

Linear

	
class mushroom.approximators.parametric.linear.LinearApproximator(weights=None, input_shape=None, output_shape=1, **kwargs)

	Bases: object

This class implements a linear approximator.

	
__init__(weights=None, input_shape=None, output_shape=1, **kwargs)

	Constructor.

	Parameters

	
	weights (np.ndarray) – array of weights to initialize the weights
of the approximator;

	input_shape (np.ndarray) – the shape of the input of the model;

	output_shape (np.ndarray) – the shape of the output of the model;

	**kwargs (dict) – other params of the approximator.

	
fit(x, y, **fit_params)

	Fit the model.

	Parameters

	
	x (np.ndarray) – input;

	y (np.ndarray) – target;

	**fit_params (dict) – other parameters used by the fit method of the
regressor.

	
predict(x, **predict_params)

	Predict.

	Parameters

	
	x (np.ndarray) – input;

	**predict_params (dict) – other parameters used by the predict method
the regressor.

	Returns

	The predictions of the model.

Pytorch Neural Network

	
class mushroom.approximators.parametric.pytorch_network.PyTorchApproximator(input_shape, output_shape, network, optimizer=None, loss=None, batch_size=0, n_fit_targets=1, use_cuda=False, reinitialize=False, dropout=False, quiet=True, **params)

	Bases: object

Class to interface a pytorch model to the mushroom Regressor interface.
This class implements all is needed to use a generic pytorch model and train
it using a specified optimizer and objective function.
This class supports also minibatches.

	
__init__(input_shape, output_shape, network, optimizer=None, loss=None, batch_size=0, n_fit_targets=1, use_cuda=False, reinitialize=False, dropout=False, quiet=True, **params)

	Constructor.

	Parameters

	
	input_shape (tuple) – shape of the input of the network;

	output_shape (tuple) – shape of the output of the network;

	network (torch.nn.Module) – the network class to use;

	optimizer (dict) – the optimizer used for every fit step;

	loss (torch.nn.functional) – the loss function to optimize in the
fit method;

	batch_size (int, 0) – the size of each minibatch. If 0, the whole
dataset is fed to the optimizer at each epoch;

	n_fit_targets (int, 1) – the number of fit targets used by the fit
method of the network;

	use_cuda (bool, False) – if True, runs the network on the GPU;

	reinitialize (bool, False) – if True, the approximator is re

	at every fit call. To perform the initialization, the (initialized) –

	method must be defined properly for the selected (weights_init) –

	network. (model) –

	dropout (bool, False) – if True, dropout is applied only during
train;

	quiet (bool, True) – if False, shows two progress bars, one for
epochs and one for the minibatches;

	params (dict) – dictionary of parameters needed to construct the
network.

Features

The features in Mushroom are 1-D arrays computed applying a specified function
to a raw input, e.g. polynomial features of the state of an MDP.
Mushroom supports three types of features:

	basis functions;

	tensor basis functions;

	tiles.

The GPU-accelerated basis functions are a Pytorch implementation of the standard
basis functions. They are less straightforward than the standard ones, but they
are faster to compute as they can exploit parallel computing, e.g. GPU-acceleration
and multi-core systems.

All the types of features are exposed by a single factory method Features
that builds the one requested by the user.

	
mushroom.features.features.Features(basis_list=None, tilings=None, tensor_list=None, device=None)

	Factory method to build the requested type of features. The types are
mutually exclusive.

The difference between basis_list and tensor_list is that the former
is a list of python classes each one evaluating a single element of the
feature vector, while the latter consists in a list of PyTorch modules that
can be used to build a PyTorch network. The use of tensor_list is a
faster way to compute features than basis_list and is suggested when the
computation of the requested features is slow (see the Gaussian radial basis
function implementation as an example).

	Parameters

	
	basis_list (list, None) – list of basis functions;

	tilings ([object, list], None) – single object or list of tilings;

	tensor_list (list, None) – list of dictionaries containing the
instructions to build the requested tensors;

	device (int, None) – where to run the group of tensors. Only
needed when using a list of tensors;

	Returns

	The class implementing the requested type of features.

	
mushroom.features.features.get_action_features(phi_state, action, n_actions)

	Compute an array of size len(phi_state) * n_actions filled with
zeros, except for elements from len(phi_state) * action to
len(phi_state) * (action + 1) that are filled with phi_state. This
is used to compute state-action features.

	Parameters

	
	phi_state (np.ndarray) – the feature of the state;

	action (np.ndarray) – the action whose features have to be computed;

	n_actions (int) – the number of actions.

	Returns

	The state-action features.

The factory method returns a class that extends the abstract class
FeatureImplementation.

Components

	Basis
	Fourier

	Gaussian RBF

	Polynomial

	Tensors
	Gaussian tensor

	Tiles

Basis

Fourier

	
class mushroom.features.basis.fourier.FourierBasis(low, delta, c, dimensions=None)

	Bases: object

Class implementing Fourier basis functions. The value of the feature
is computed using the formula:

\[\sum \cos{\pi(X - m)/\Delta c}\]

where X is the input, m is the vector of the minumum input values (for each
dimensions) , Delta is the vector of maximum

	
__init__(low, delta, c, dimensions=None)

	Constructor.

	Parameters

	
	low (np.ndarray) – vector of minimum values of the input variables;

	delta (np.ndarray) – vector of the maximum difference between two
values of the input variables, i.e. delta = high - low;

	c (np.ndarray) – vector of weights for the state variables;

	dimensions (list, None) – list of the dimensions of the input to be
considered by the feature.

	
__call__(x)

	Call self as a function.

	
static generate(low, high, n, dimensions=None)

	Factory method to build a set of fourier basis.

	Parameters

	
	low (np.ndarray) – vector of minimum values of the input variables;

	high (np.ndarray) – vector of maximum values of the input variables;

	n (int) – number of harmonics to consider for each state variable

	dimensions (list, None) – list of the dimensions of the input to be
considered by the features.

	Returns

	The list of the generated fourier basis functions.

Gaussian RBF

	
class mushroom.features.basis.gaussian_rbf.GaussianRBF(mean, scale, dimensions=None)

	Bases: object

Class implementing Gaussian radial basis functions. The value of the feature
is computed using the formula:

\[\sum \dfrac{(X_i - \mu_i)^2}{\sigma_i}\]

where X is the input, mu is the mean vector and sigma is the scale
parameter vector.

	
__init__(mean, scale, dimensions=None)

	Constructor.

	Parameters

	
	mean (np.ndarray) – the mean vector of the feature;

	scale (np.ndarray) – the scale vector of the feature;

	dimensions (list, None) – list of the dimensions of the input to be
considered by the feature. The number of dimensions must match
the dimensionality of mean and scale.

	
__call__(x)

	Call self as a function.

	
static generate(n_centers, low, high, dimensions=None)

	Factory method to build uniformly spaced gaussian radial basis functions
with a 25% overlap.

	Parameters

	
	n_centers (list) – list of the number of radial basis functions to be
used for each dimension.

	low (np.ndarray) – lowest value for each dimension;

	high (np.ndarray) – highest value for each dimension;

	dimensions (list, None) – list of the dimensions of the input to be
considered by the feature. The number of dimensions must match
the number of elements in n_centers and low.

	Returns

	The list of the generated radial basis functions.

Polynomial

	
class mushroom.features.basis.polynomial.PolynomialBasis(dimensions=None, degrees=None)

	Bases: object

Class implementing polynomial basis functions. The value of the feature
is computed using the formula:

\[\prod X_i^{d_i}\]

where X is the input and d is the vector of the exponents of the polynomial.

	
__init__(dimensions=None, degrees=None)

	Constructor. If both parameters are None, the constant feature is built.

	Parameters

	
	dimensions (list, None) – list of the dimensions of the input to be
considered by the feature;

	degrees (list, None) – list of the degrees of each dimension to be
considered by the feature. It must match the number of elements
of dimensions.

	
__call__(x)

	Call self as a function.

	
static _compute_exponents(order, n_variables)

	Find the exponents of a multivariate polynomial expression of order
order and n_variables number of variables.

	Parameters

	
	order (int) – the maximum order of the polynomial;

	n_variables (int) – the number of elements of the input vector.

	Yields

	The current exponent of the polynomial.

	
static generate(max_degree, input_size)

	Factory method to build a polynomial of order max_degree based on
the first input_size dimensions of the input.

	Parameters

	
	max_degree (int) – maximum degree of the polynomial;

	input_size (int) – size of the input.

	Returns

	The list of the generated polynomial basis functions.

Tensors

Gaussian tensor

	
class mushroom.features.tensors.gaussian_tensor.PyTorchGaussianRBF(mu, scale, dim)

	Bases: sphinx.ext.autodoc.importer._MockObject

Pytorch module to implement a gaussian radial basis function.

	
__init__(mu, scale, dim)

	Initialize self. See help(type(self)) for accurate signature.

	
static generate(n_centers, low, high, dimensions=None)

	Factory method that generates the list of dictionaries to build the
tensors representing a set of uniformly spaced Gaussian radial basis
functions with a 25% overlap.

	Parameters

	
	n_centers (list) – list of the number of radial basis functions to be
used for each dimension;

	low (np.ndarray) – lowest value for each dimension;

	high (np.ndarray) – highest value for each dimension;

	dimensions (list, None) – list of the dimensions of the input to be
considered by the feature. The number of dimensions must match
the number of elements in n_centers and low.

	Returns

	The list of dictionaries as described above.

Tiles

	
class mushroom.features.tiles.tiles.Tiles(x_range, n_tiles, state_components=None)

	Bases: object

Class implementing rectangular tiling. For each point in the state space,
this class can be used to compute the index of the corresponding tile.

	
__init__(x_range, n_tiles, state_components=None)

	Constructor.

	Parameters

	
	x_range (list) – list of two-elements lists specifying the range of
each state variable;

	n_tiles (list) – list of the number of tiles to be used for each
dimension.

	state_components (list, None) – list of the dimensions of the input
to be considered by the tiling. The number of elements must
match the number of elements in x_range and n_tiles.

	
__call__(x)

	Call self as a function.

	
static generate(n_tilings, n_tiles, low, high, uniform=False)

	Factory method to build n_tilings tilings of n_tiles tiles with
a range between low and high for each dimension.

	Parameters

	
	n_tilings (int) – number of tilings;

	n_tiles (list) – number of tiles for each tilings for each dimension;

	low (np.ndarray) – lowest value for each dimension;

	high (np.ndarray) – highest value for each dimension.

	uniform (bool, False) – if True the displacement for each tiling will
be w/n_tilings, where w is the tile width.
Otherwise, the displacement will be
k*w/n_tilings, where k=2i+1, where i is the
dimension index.

	Returns

	The list of the generated tiles.

Policy

	
class mushroom.policy.policy.Policy

	Bases: object

Interface representing a generic policy.
A policy is a probability distribution that gives the probability of taking
an action given a specified state.
A policy is used by mushroom agents to interact with the environment.

	
__call__(*args)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
__init__

	Initialize self. See help(type(self)) for accurate signature.

	
class mushroom.policy.policy.ParametricPolicy

	Bases: mushroom.policy.policy.Policy

Interface for a generic parametric policy.
A parametric policy is a policy that depends on set of parameters,
called the policy weights.
If the policy is differentiable, the derivative of the probability for a
specified state-action pair can be provided.

	
diff_log(state, action)

	Compute the gradient of the logarithm of the probability density
function, in the specified state and action pair, i.e.:

\[\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the gradient is computed

	action (np.ndarray) – the action where the gradient is computed

	Returns

	The gradient of the logarithm of the pdf w.r.t. the policy weights

	
diff(state, action)

	Compute the derivative of the probability density function, in the
specified state and action pair. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\theta}p(s,a)=p(s,a)\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the derivative is computed

	action (np.ndarray) – the action where the derivative is computed

	Returns

	The derivative w.r.t. the policy weights

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy

	
get_weights()

	Getter.

	Returns

	The current policy weights

	
weights_size

	Property.

	Returns

	The size of the policy weights

	
__call__(*args)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
__init__

	Initialize self. See help(type(self)) for accurate signature.

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

Gaussian policy

	
class mushroom.policy.gaussian_policy.GaussianPolicy(mu, sigma)

	Bases: mushroom.policy.policy.ParametricPolicy

Gaussian policy.
This is a differentiable policy for continuous action spaces.
The policy samples an action in every state following a gaussian
distribution, where the mean is computed in the state and the covariance
matrix is fixed.

	
__init__(mu, sigma)

	Constructor.

	Parameters

	
	mu (Regressor) – the regressor representing the mean w.r.t. the
state;

	sigma (np.ndarray) – a square positive definite matrix representing
the covariance matrix. The size of this matrix must be n x n,
where n is the action dimensionality.

	
set_sigma(sigma)

	Setter.

	Parameters

	sigma (np.ndarray) – the new covariance matrix. Must be a square
positive definite matrix.

	
__call__(state, action)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
diff_log(state, action)

	Compute the gradient of the logarithm of the probability density
function, in the specified state and action pair, i.e.:

\[\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the gradient is computed

	action (np.ndarray) – the action where the gradient is computed

	Returns

	The gradient of the logarithm of the pdf w.r.t. the policy weights

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy

	
get_weights()

	Getter.

	Returns

	The current policy weights

	
weights_size

	Property.

	Returns

	The size of the policy weights

	
diff(state, action)

	Compute the derivative of the probability density function, in the
specified state and action pair. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\theta}p(s,a)=p(s,a)\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the derivative is computed

	action (np.ndarray) – the action where the derivative is computed

	Returns

	The derivative w.r.t. the policy weights

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
class mushroom.policy.gaussian_policy.DiagonalGaussianPolicy(mu, std)

	Bases: mushroom.policy.policy.ParametricPolicy

Gaussian policy with learnable standard deviation.
The Covariance matrix is
constrained to be a diagonal matrix, where the diagonal is the squared
standard deviation vector.
This is a differentiable policy for continuous action spaces.
This policy is similar to the gaussian policy, but the weights includes
also the standard deviation.

	
__init__(mu, std)

	Constructor.

	Parameters

	
	mu (Regressor) – the regressor representing the mean w.r.t. the
state;

	std (np.ndarray) – a vector of standard deviations. The length of
this vector must be equal to the action dimensionality.

	
set_std(std)

	Setter.

	Parameters

	std (np.ndarray) – the new standard deviation. Must be a square
positive definite matrix.

	
__call__(state, action)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
diff_log(state, action)

	Compute the gradient of the logarithm of the probability density
function, in the specified state and action pair, i.e.:

\[\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the gradient is computed

	action (np.ndarray) – the action where the gradient is computed

	Returns

	The gradient of the logarithm of the pdf w.r.t. the policy weights

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy

	
get_weights()

	Getter.

	Returns

	The current policy weights

	
weights_size

	Property.

	Returns

	The size of the policy weights

	
diff(state, action)

	Compute the derivative of the probability density function, in the
specified state and action pair. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\theta}p(s,a)=p(s,a)\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the derivative is computed

	action (np.ndarray) – the action where the derivative is computed

	Returns

	The derivative w.r.t. the policy weights

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
class mushroom.policy.gaussian_policy.StateStdGaussianPolicy(mu, std, eps=1e-06)

	Bases: mushroom.policy.policy.ParametricPolicy

Gaussian policy with learnable standard deviation.
The Covariance matrix is
constrained to be a diagonal matrix, where the diagonal is the squared
standard deviation, which is computed for each state.
This is a differentiable policy for continuous action spaces.
This policy is similar to the diagonal gaussian policy, but a parametric
regressor is used to compute the standard deviation, so the standard
deviation depends on the current state.

	
__init__(mu, std, eps=1e-06)

	Constructor.

	Parameters

	
	mu (Regressor) – the regressor representing the mean w.r.t. the
state;

	std (Regressor) – the regressor representing the standard
deviations w.r.t. the state. The output dimensionality of the
regressor must be equal to the action dimensionality;

	eps (float, 1e-6) – A positive constant added to the variance to
ensure that is always greater than zero.

	
__call__(state, action)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
diff_log(state, action)

	Compute the gradient of the logarithm of the probability density
function, in the specified state and action pair, i.e.:

\[\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the gradient is computed

	action (np.ndarray) – the action where the gradient is computed

	Returns

	The gradient of the logarithm of the pdf w.r.t. the policy weights

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy

	
get_weights()

	Getter.

	Returns

	The current policy weights

	
weights_size

	Property.

	Returns

	The size of the policy weights

	
diff(state, action)

	Compute the derivative of the probability density function, in the
specified state and action pair. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\theta}p(s,a)=p(s,a)\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the derivative is computed

	action (np.ndarray) – the action where the derivative is computed

	Returns

	The derivative w.r.t. the policy weights

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
class mushroom.policy.gaussian_policy.StateLogStdGaussianPolicy(mu, log_std)

	Bases: mushroom.policy.policy.ParametricPolicy

Gaussian policy with learnable standard deviation.
The Covariance matrix is
constrained to be a diagonal matrix, the diagonal is computed by an
exponential transformation of the logarithm of the standard deviation
computed in each state.
This is a differentiable policy for continuous action spaces.
This policy is similar to the State std gaussian policy, but here the
regressor represents the logarithm of the standard deviation.

	
__init__(mu, log_std)

	Constructor.

	Parameters

	
	mu (Regressor) – the regressor representing the mean w.r.t. the
state;

	log_std (Regressor) – a regressor representing the logarithm of the
variance w.r.t. the state. The output dimensionality of the
regressor must be equal to the action dimensionality.

	
__call__(state, action)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
diff_log(state, action)

	Compute the gradient of the logarithm of the probability density
function, in the specified state and action pair, i.e.:

\[\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the gradient is computed

	action (np.ndarray) – the action where the gradient is computed

	Returns

	The gradient of the logarithm of the pdf w.r.t. the policy weights

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy

	
get_weights()

	Getter.

	Returns

	The current policy weights

	
weights_size

	Property.

	Returns

	The size of the policy weights

	
diff(state, action)

	Compute the derivative of the probability density function, in the
specified state and action pair. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\theta}p(s,a)=p(s,a)\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the derivative is computed

	action (np.ndarray) – the action where the derivative is computed

	Returns

	The derivative w.r.t. the policy weights

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

TD policy

	
class mushroom.policy.td_policy.TDPolicy

	Bases: mushroom.policy.policy.Policy

	
__init__()

	Constructor.

	
set_q(approximator)

	
	Parameters

	approximator (object) – the approximator to use.

	
get_q()

	
	Returns

	The approximator used by the policy.

	
__call__(*args)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
class mushroom.policy.td_policy.EpsGreedy(epsilon)

	Bases: mushroom.policy.td_policy.TDPolicy

Epsilon greedy policy.

	
__init__(epsilon)

	Constructor.

	Parameters

	epsilon (Parameter) – the exploration coefficient. It indicates
the probability of performing a random actions in the current
step.

	
__call__(*args)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
set_epsilon(epsilon)

	Setter.

	Parameters

	
	epsilon (Parameter) – the exploration coefficient. It indicates the

	of performing a random actions in the current step. (probability) –

	
update(*idx)

	Update the value of the epsilon parameter at the provided index (e.g. in
case of different values of epsilon for each visited state according to
the number of visits).

	Parameters

	*idx (list) – index of the parameter to be updated.

	
get_q()

	
	Returns

	The approximator used by the policy.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
set_q(approximator)

	
	Parameters

	approximator (object) – the approximator to use.

	
class mushroom.policy.td_policy.Boltzmann(beta)

	Bases: mushroom.policy.td_policy.TDPolicy

Boltzmann softmax policy.

	
__init__(beta)

	Constructor.

	Parameters

	
	beta (Parameter) – the inverse of the temperature distribution. As

	temperature approaches infinity, the policy becomes more and (the) –

	random. As the temperature approaches 0.0, the policy becomes (more) –

	and more greedy. (more) –

	
__call__(*args)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
get_q()

	
	Returns

	The approximator used by the policy.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
set_q(approximator)

	
	Parameters

	approximator (object) – the approximator to use.

	
class mushroom.policy.td_policy.Mellowmax(omega, beta_min=-10.0, beta_max=10.0)

	Bases: mushroom.policy.td_policy.Boltzmann

Mellowmax policy.
“An Alternative Softmax Operator for Reinforcement Learning”. Asadi K. and
Littman M.L.. 2017.

	
__init__(omega, beta_min=-10.0, beta_max=10.0)

	Constructor.

	Parameters

	
	omega (Parameter) – the omega parameter of the policy from which beta
of the Boltzmann policy is computed;

	beta_min (float, -10.) – one end of the bracketing interval for
minimization with Brent’s method;

	beta_max (float, 10.) – the other end of the bracketing interval for
minimization with Brent’s method.

	
__call__(*args)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
get_q()

	
	Returns

	The approximator used by the policy.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
set_q(approximator)

	
	Parameters

	approximator (object) – the approximator to use.

Distributions

	
class mushroom.distributions.distribution.Distribution

	Bases: object

Interface for Distributions to represent a generic probability distribution.
Probability distributions are often used by black box optimization
algorithms in order to perform exploration in parameter space. In
literature, they are also known as high level policies.

	
sample()

	Draw a sample from the distribution.

	Returns

	A random vector sampled from the distribution.

	
log_pdf(theta)

	Compute the logarithm of the probability density function in the
specified point

	Parameters

	theta (np.ndarray) – the point where the log pdf is calculated

	Returns

	The value of the log pdf in the specified point.

	
__call__(theta)

	Compute the probability density function in the specified point

	Parameters

	theta (np.ndarray) – the point where the pdf is calculated

	Returns

	The value of the pdf in the specified point.

	
mle(theta, weights=None)

	Compute the (weighted) maximum likelihood estimate of the points,
and update the distribution accordingly.

	Parameters

	
	theta (np.ndarray) – a set of points, every row is a sample

	weights (np.ndarray, None) – a vector of weights. If specified
the weighted maximum likelihood
estimate is computed instead of the
plain maximum likelihood. The number of
elements of this vector must be equal
to the number of rows of the theta
matrix.

	
diff_log(theta)

	Compute the derivative of the gradient of the probability denstity
function in the specified point.

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the log pdf is

	calculated –

	Returns

	The gradient of the log pdf in the specified point.

	
diff(theta)

	Compute the derivative of the probability density function, in the
specified point. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\rho}p(\theta)=p(\theta)\nabla_{\rho}\log p(\theta)\]

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the pdf is

	calculated. –

	Returns

	The gradient of the pdf in the specified point.

	
get_parameters()

	Getter.

	Returns

	The current distribution parameters.

	
set_parameters(rho)

	Setter.

	Parameters

	rho (np.ndarray) – the vector of the new parameters to be used by
the distribution

	
parameters_size

	Property.

	Returns

	The size of the distribution parameters.

	
__init__

	Initialize self. See help(type(self)) for accurate signature.

Gaussian

	
class mushroom.distributions.gaussian.GaussianDistribution(mu, sigma)

	Bases: mushroom.distributions.distribution.Distribution

Gaussian distribution with fixed covariance matrix. The parameters
vector represents only the mean.

	
__init__(mu, sigma)

	Initialize self. See help(type(self)) for accurate signature.

	
sample()

	Draw a sample from the distribution.

	Returns

	A random vector sampled from the distribution.

	
log_pdf(theta)

	Compute the logarithm of the probability density function in the
specified point

	Parameters

	theta (np.ndarray) – the point where the log pdf is calculated

	Returns

	The value of the log pdf in the specified point.

	
__call__(theta)

	Compute the probability density function in the specified point

	Parameters

	theta (np.ndarray) – the point where the pdf is calculated

	Returns

	The value of the pdf in the specified point.

	
mle(theta, weights=None)

	Compute the (weighted) maximum likelihood estimate of the points,
and update the distribution accordingly.

	Parameters

	
	theta (np.ndarray) – a set of points, every row is a sample

	weights (np.ndarray, None) – a vector of weights. If specified
the weighted maximum likelihood
estimate is computed instead of the
plain maximum likelihood. The number of
elements of this vector must be equal
to the number of rows of the theta
matrix.

	
diff_log(theta)

	Compute the derivative of the gradient of the probability denstity
function in the specified point.

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the log pdf is

	calculated –

	Returns

	The gradient of the log pdf in the specified point.

	
get_parameters()

	Getter.

	Returns

	The current distribution parameters.

	
set_parameters(rho)

	Setter.

	Parameters

	rho (np.ndarray) – the vector of the new parameters to be used by
the distribution

	
parameters_size

	Property.

	Returns

	The size of the distribution parameters.

	
diff(theta)

	Compute the derivative of the probability density function, in the
specified point. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\rho}p(\theta)=p(\theta)\nabla_{\rho}\log p(\theta)\]

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the pdf is

	calculated. –

	Returns

	The gradient of the pdf in the specified point.

	
class mushroom.distributions.gaussian.GaussianDiagonalDistribution(mu, std)

	Bases: mushroom.distributions.distribution.Distribution

Gaussian distribution with diagonal covariance matrix. The parameters
vector represents the mean and the standard deviation for each dimension.

	
__init__(mu, std)

	Initialize self. See help(type(self)) for accurate signature.

	
sample()

	Draw a sample from the distribution.

	Returns

	A random vector sampled from the distribution.

	
log_pdf(theta)

	Compute the logarithm of the probability density function in the
specified point

	Parameters

	theta (np.ndarray) – the point where the log pdf is calculated

	Returns

	The value of the log pdf in the specified point.

	
__call__(theta)

	Compute the probability density function in the specified point

	Parameters

	theta (np.ndarray) – the point where the pdf is calculated

	Returns

	The value of the pdf in the specified point.

	
mle(theta, weights=None)

	Compute the (weighted) maximum likelihood estimate of the points,
and update the distribution accordingly.

	Parameters

	
	theta (np.ndarray) – a set of points, every row is a sample

	weights (np.ndarray, None) – a vector of weights. If specified
the weighted maximum likelihood
estimate is computed instead of the
plain maximum likelihood. The number of
elements of this vector must be equal
to the number of rows of the theta
matrix.

	
diff_log(theta)

	Compute the derivative of the gradient of the probability denstity
function in the specified point.

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the log pdf is

	calculated –

	Returns

	The gradient of the log pdf in the specified point.

	
get_parameters()

	Getter.

	Returns

	The current distribution parameters.

	
set_parameters(rho)

	Setter.

	Parameters

	rho (np.ndarray) – the vector of the new parameters to be used by
the distribution

	
parameters_size

	Property.

	Returns

	The size of the distribution parameters.

	
diff(theta)

	Compute the derivative of the probability density function, in the
specified point. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\rho}p(\theta)=p(\theta)\nabla_{\rho}\log p(\theta)\]

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the pdf is

	calculated. –

	Returns

	The gradient of the pdf in the specified point.

	
class mushroom.distributions.gaussian.GaussianCholeskyDistribution(mu, sigma)

	Bases: mushroom.distributions.distribution.Distribution

Gaussian distribution with full covariance matrix. The parameters
vector represents the mean and the Cholesky decomposition of the
covariance matrix. This parametrization enforce the covariance matrix to be
positive definite.

	
__init__(mu, sigma)

	Initialize self. See help(type(self)) for accurate signature.

	
sample()

	Draw a sample from the distribution.

	Returns

	A random vector sampled from the distribution.

	
log_pdf(theta)

	Compute the logarithm of the probability density function in the
specified point

	Parameters

	theta (np.ndarray) – the point where the log pdf is calculated

	Returns

	The value of the log pdf in the specified point.

	
__call__(theta)

	Compute the probability density function in the specified point

	Parameters

	theta (np.ndarray) – the point where the pdf is calculated

	Returns

	The value of the pdf in the specified point.

	
mle(theta, weights=None)

	Compute the (weighted) maximum likelihood estimate of the points,
and update the distribution accordingly.

	Parameters

	
	theta (np.ndarray) – a set of points, every row is a sample

	weights (np.ndarray, None) – a vector of weights. If specified
the weighted maximum likelihood
estimate is computed instead of the
plain maximum likelihood. The number of
elements of this vector must be equal
to the number of rows of the theta
matrix.

	
diff_log(theta)

	Compute the derivative of the gradient of the probability denstity
function in the specified point.

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the log pdf is

	calculated –

	Returns

	The gradient of the log pdf in the specified point.

	
get_parameters()

	Getter.

	Returns

	The current distribution parameters.

	
set_parameters(rho)

	Setter.

	Parameters

	rho (np.ndarray) – the vector of the new parameters to be used by
the distribution

	
parameters_size

	Property.

	Returns

	The size of the distribution parameters.

	
diff(theta)

	Compute the derivative of the probability density function, in the
specified point. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\rho}p(\theta)=p(\theta)\nabla_{\rho}\log p(\theta)\]

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the pdf is

	calculated. –

	Returns

	The gradient of the pdf in the specified point.

Solvers

Dynamic programming

	
mushroom.solvers.dynamic_programming.value_iteration(prob, reward, gamma, eps)

	Value iteration algorithm to solve a dynamic programming problem.

	Parameters

	
	prob (np.ndarray) – transition probability matrix;

	reward (np.ndarray) – reward matrix;

	gamma (float) – discount factor;

	eps (float) – accuracy threshold.

	Returns

	The optimal value of each state.

	
mushroom.solvers.dynamic_programming.policy_iteration(prob, reward, gamma)

	Policy iteration algorithm to solve a dynamic programming problem.

	Parameters

	
	prob (np.ndarray) – transition probability matrix;

	reward (np.ndarray) – reward matrix;

	gamma (float) – discount factor.

	Returns

	The optimal value of each state and the optimal policy.

Utils

Angles

	
mushroom.utils.angles.normalize_angle_positive(angle)

	Wrap the angle between 0 and 2 * pi.

	Parameters

	angle (float) – angle to wrap.

	Returns

	The wrapped angle.

	
mushroom.utils.angles.normalize_angle(angle)

	Wrap the angle between -pi and pi.

	Parameters

	angle (float) – angle to wrap.

	Returns

	The wrapped angle.

Callbacks

	
class mushroom.utils.callbacks.CollectDataset

	Bases: object

This callback can be used to collect samples during the learning of the
agent.

	
__init__()

	Constructor.

	
__call__(dataset)

	Add samples to the samples list.

	Parameters

	dataset (list) – the samples to collect.

	
get()

	
	Returns

	The current samples list.

	
clean()

	Deletes the current dataset

	
class mushroom.utils.callbacks.CollectQ(approximator)

	Bases: object

This callback can be used to collect the action values in all states at the
current time step.

	
__init__(approximator)

	Constructor.

	Parameters

	approximator ([Table, EnsembleTable]) – the approximator to use to
predict the action values.

	
__call__(**kwargs)

	Add action values to the action-values list.

	Parameters

	**kwargs (dict) – empty dictionary.

	
get_values()

	
	Returns

	The current action-values list.

	
class mushroom.utils.callbacks.CollectMaxQ(approximator, state)

	Bases: object

This callback can be used to collect the maximum action value in a given
state at each call.

	
__init__(approximator, state)

	Constructor.

	Parameters

	
	approximator ([Table, EnsembleTable]) – the approximator to use;

	state (np.ndarray) – the state to consider.

	
__call__(**kwargs)

	Add maximum action values to the maximum action-values list.

	Parameters

	**kwargs (dict) – empty dictionary.

	
get_values()

	
	Returns

	The current maximum action-values list.

	
class mushroom.utils.callbacks.CollectParameters(parameter, *idx)

	Bases: object

This callback can be used to collect the values of a parameter
(e.g. learning rate) during a run of the agent.

	
__init__(parameter, *idx)

	Constructor.

	Parameters

	
	parameter (Parameter) – the parameter whose values have to be
collected;

	*idx (list) – index of the parameter when the parameter is
tabular.

	
__call__(**kwargs)

	Add the parameter value to the parameter values list.

	Parameters

	**kwargs (dict) – empty dictionary.

	
get_values()

	
	Returns

	The current parameter values list.

Dataset

	
mushroom.utils.dataset.parse_dataset(dataset, features=None)

	Split the dataset in its different components and return them.

	Parameters

	
	dataset (list) – the dataset to parse;

	features (object, None) – features to apply to the states.

	Returns

	The np.ndarray of state, action, reward, next_state, absorbing flag and
last step flag. Features are applied to state and next_state,
when provided.

	
mushroom.utils.dataset.episodes_length(dataset)

	Compute the length of each episode in the dataset.

	Parameters

	dataset (list) – the dataset to consider.

	Returns

	A list of length of each episode in the dataset.

	
mushroom.utils.dataset.select_episodes(dataset, n_episodes, parse=False)

	Return the first n_episodes episodes in the provided dataset.

	Parameters

	
	dataset (list) – the dataset to consider;

	n_episodes (int) – the number of episodes to pick from the dataset;

	parse (bool, False) – whether to parse the dataset to return.

	Returns

	A subset of the dataset containing the first n_episodes episodes.

	
mushroom.utils.dataset.select_samples(dataset, n_samples, parse=False)

	Return the randomly picked desired number of samples in the provided
dataset.

	Parameters

	
	dataset (list) – the dataset to consider;

	n_samples (int) – the number of samples to pick from the dataset;

	parse (bool, False) – whether to parse the dataset to return.

	Returns

	A subset of the dataset containing randomly picked n_samples
samples.

	
mushroom.utils.dataset.compute_J(dataset, gamma=1.0)

	Compute the cumulative discounted reward of each episode in the dataset.

	Parameters

	
	dataset (list) – the dataset to consider;

	gamma (float, 1.) – discount factor.

	Returns

	The cumulative discounted reward of each episode in the dataset.

	
mushroom.utils.dataset.compute_scores(dataset)

	Compute the scores of each episode in the dataset. This is meant to be used
for the Atari environments.

	Parameters

	dataset (list) – the dataset to consider.

	Returns

	The minimum score reached in an episode,
the maximum score reached in an episode,
the mean score reached,
the number of completed games.

If no game has been completed, it returns 0 for all values.

Eligibility trace

	
mushroom.utils.eligibility_trace.EligibilityTrace(shape, name='replacing')

	Factory method to create an eligibility trace of the provided type.

	Parameters

	
	shape (list) – shape of the eligibility trace table;

	name (str, 'replacing') – type of the eligibility trace.

	Returns

	The eligibility trace table of the provided shape and type.

	
class mushroom.utils.eligibility_trace.ReplacingTrace(shape, initial_value=0.0, dtype=None)

	Bases: mushroom.utils.table.Table

Replacing trace.

	
reset()

	

	
update(state, action)

	

	
__init__(shape, initial_value=0.0, dtype=None)

	Constructor.

	Parameters

	
	shape (tuple) – the shape of the tabular regressor.

	initial_value (float, 0.) – the initial value for each entry of the
tabular regressor.

	dtype ([int, float], None) – the dtype of the table array.

	
fit(x, y)

	
	Parameters

	
	x (int) – index of the table to be filled;

	y (float) – value to fill in the table.

	
n_actions

	The number of actions considered by the table.

	Type

	Returns

	
predict(*z)

	Predict the output of the table given an input.

	Parameters

	
	*z (list) – list of input of the model. If the table is a Q-table,

	list may contain states or states and actions depending (this) – on whether the call requires to predict all q-values or only
one q-value corresponding to the provided action;

	Returns

	The table prediction.

	
shape

	The shape of the table.

	Type

	Returns

	
class mushroom.utils.eligibility_trace.AccumulatingTrace(shape, initial_value=0.0, dtype=None)

	Bases: mushroom.utils.table.Table

Accumulating trace.

	
reset()

	

	
update(state, action)

	

	
__init__(shape, initial_value=0.0, dtype=None)

	Constructor.

	Parameters

	
	shape (tuple) – the shape of the tabular regressor.

	initial_value (float, 0.) – the initial value for each entry of the
tabular regressor.

	dtype ([int, float], None) – the dtype of the table array.

	
fit(x, y)

	
	Parameters

	
	x (int) – index of the table to be filled;

	y (float) – value to fill in the table.

	
n_actions

	The number of actions considered by the table.

	Type

	Returns

	
predict(*z)

	Predict the output of the table given an input.

	Parameters

	
	*z (list) – list of input of the model. If the table is a Q-table,

	list may contain states or states and actions depending (this) – on whether the call requires to predict all q-values or only
one q-value corresponding to the provided action;

	Returns

	The table prediction.

	
shape

	The shape of the table.

	Type

	Returns

Features

	
mushroom.utils.features.uniform_grid(n_centers, low, high)

	This function is used to create the parameters of uniformly spaced radial
basis functions with 25% of overlap. It creates a uniformly spaced grid of
n_centers[i] points in each ranges[i]. Also returns a vector
containing the appropriate scales of the radial basis functions.

	Parameters

	
	n_centers (list) – number of centers of each dimension;

	low (np.ndarray) – lowest value for each dimension;

	high (np.ndarray) – highest value for each dimension.

	Returns

	The uniformly spaced grid and the scale vector.

Folder

	
mushroom.utils.folder.mk_dir_recursive(dir_path)

	Create a directory and, if needed, all the directory tree. Differently from
os.mkdir, this function does not raise exception when the directory already
exists.

	Parameters

	dir_path (str) – the path of the directory to create.

	
mushroom.utils.folder.force_symlink(src, dst)

	Create a symlink deleting the previous one, if it already exists.

	Parameters

	
	src (str) – source;

	dst (str) – destination.

Minibatches

	
mushroom.utils.minibatches.minibatch_number(size, batch_size)

	Function to retrieve the number of batches, given a batch sizes.

	Parameters

	
	size (int) – size of the dataset;

	batch_size (int) – size of the batches.

	Returns

	The number of minibatches in the dataset.

	
mushroom.utils.minibatches.minibatch_generator(batch_size, *dataset)

	Generator that creates a minibatch from the full dataset.

	Parameters

	
	batch_size (int) – the maximum size of each minibatch;

	dataset – the dataset to be splitted.

	Returns

	The current minibatch.

Numerical gradient

	
mushroom.utils.numerical_gradient.numerical_diff_policy(policy, state, action, eps=1e-06)

	Compute the gradient of a policy in (state, action) numerically.

	Parameters

	
	policy (Policy) – the policy whose gradient has to be returned;

	state (np.ndarray) – the state;

	action (np.ndarray) – the action;

	eps (float, 1e-6) – the value of the perturbation.

	Returns

	The gradient of the provided policy in (state, action)
computed numerically.

	
mushroom.utils.numerical_gradient.numerical_diff_dist(dist, theta, eps=1e-06)

	Compute the gradient of a distribution in theta numerically.

	Parameters

	
	dist (Distribution) – the distribution whose gradient has to be returned;

	theta (np.ndarray) – the parametrization where to compute the gradient;

	eps (float, 1e-6) – the value of the perturbation.

	Returns

	The gradient of the provided distribution theta computed
numerically.

Parameters

	
class mushroom.utils.parameters.Parameter(value, min_value=None, max_value=None, size=(1,))

	Bases: object

This class implements function to manage parameters, such as learning rate.
It also allows to have a single parameter for each state of state-action
tuple.

	
__init__(value, min_value=None, max_value=None, size=(1,))

	Constructor.

	Parameters

	
	value (float) – initial value of the parameter;

	min_value (float, None) – minimum value that the parameter can reach
when decreasing;

	max_value (float, None) – maximum value that the parameter can reach
when increasing;

	size (tuple, (1,)) – shape of the matrix of parameters; this shape
can be used to have a single parameter for each state or
state-action tuple.

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
_compute(*idx, **kwargs)

	
	Returns

	The value of the parameter in the provided index.

	
update(*idx, **kwargs)

	Updates the number of visit of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter whose number of visits has to be
updated.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
class mushroom.utils.parameters.LinearParameter(value, threshold_value, n, size=(1,))

	Bases: mushroom.utils.parameters.Parameter

This class implements a linearly changing parameter according to the number
of times it has been used.

	
__init__(value, threshold_value, n, size=(1,))

	Constructor.

	Parameters

	
	value (float) – initial value of the parameter;

	min_value (float, None) – minimum value that the parameter can reach
when decreasing;

	max_value (float, None) – maximum value that the parameter can reach
when increasing;

	size (tuple, (1,)) – shape of the matrix of parameters; this shape
can be used to have a single parameter for each state or
state-action tuple.

	
_compute(*idx, **kwargs)

	Returns:
The value of the parameter in the provided index.

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
update(*idx, **kwargs)

	Updates the number of visit of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter whose number of visits has to be
updated.

	
class mushroom.utils.parameters.ExponentialParameter(value, exp=1.0, min_value=None, max_value=None, size=(1,))

	Bases: mushroom.utils.parameters.Parameter

This class implements a exponentially changing parameter according to the
number of times it has been used.

	
__init__(value, exp=1.0, min_value=None, max_value=None, size=(1,))

	Constructor.

	Parameters

	
	value (float) – initial value of the parameter;

	min_value (float, None) – minimum value that the parameter can reach
when decreasing;

	max_value (float, None) – maximum value that the parameter can reach
when increasing;

	size (tuple, (1,)) – shape of the matrix of parameters; this shape
can be used to have a single parameter for each state or
state-action tuple.

	
_compute(*idx, **kwargs)

	Returns:
The value of the parameter in the provided index.

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
update(*idx, **kwargs)

	Updates the number of visit of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter whose number of visits has to be
updated.

	
class mushroom.utils.parameters.AdaptiveParameter(value)

	Bases: object

This class implements a basic adaptive gradient step. Instead of moving of
a step proportional to the gradient, takes a step limited by a given metric.
To specify the metric, the natural gradient has to be provided. If natural
gradient is not provided, the identity matrix is used.

The step rule is:

\[\begin{align}\begin{aligned}\Delta\theta=\underset{\Delta\vartheta}{argmax}\Delta\vartheta^{t}\nabla_{\theta}J\\s.t.:\Delta\vartheta^{T}M\Delta\vartheta\leq\varepsilon\end{aligned}\end{align} \]

Lecture notes, Neumann G.
http://www.ias.informatik.tu-darmstadt.de/uploads/Geri/lecture-notes-constraint.pdf

	
__init__(value)

	Initialize self. See help(type(self)) for accurate signature.

	
__call__(*args, **kwargs)

	Call self as a function.

Preprocessor

	
class mushroom.utils.preprocessor.Preprocessor

	Bases: object

This is the interface class of the preprocessors.

	
__call__(x)

	Compute the preprocessing of the given input according to the type of
preprocessor.

	Parameters

	x (np.ndarray) – the array to preprocess.

	Returns

	The preprocessed input data array.

	
class mushroom.utils.preprocessor.Scaler(coeff)

	Bases: mushroom.utils.preprocessor.Preprocessor

This class implements the function to scale the input data by a given
coefficient.

	
__init__(coeff)

	Constructor.

	Parameters

	coeff (float) – the coefficient to use to scale input data.

	
class mushroom.utils.preprocessor.Binarizer(threshold, geq=True)

	Bases: mushroom.utils.preprocessor.Preprocessor

This class implements the function to binarize the values of an array
according to a provided threshold value.

	
__init__(threshold, geq=True)

	Constructor.

	Parameters

	
	threshold (float) – the coefficient to use to scale input data.

	geq (bool, True) – whether the threshold include equal elements
or not.

	
class mushroom.utils.preprocessor.Filter(idxs)

	Bases: mushroom.utils.preprocessor.Preprocessor

This class implements the function to filter the values of an array
according to a provided array of indexes.

	
__init__(idxs)

	Constructor.

	Parameters

	idxs (float) – the array of idxs to use to filter input data.

Replay memory

	
class mushroom.utils.replay_memory.ReplayMemory(initial_size, max_size)

	Bases: object

This class implements function to manage a replay memory as the one used in
“Human-Level Control Through Deep Reinforcement Learning” by Mnih V. et al..

	
__init__(initial_size, max_size)

	Constructor.

	Parameters

	
	initial_size (int) – initial number of elements in the replay memory;

	max_size (int) – maximum number of elements that the replay memory
can contain.

	
add(dataset)

	Add elements to the replay memory.

	Parameters

	dataset (list) – list of elements to add to the replay memory.

	
get(n_samples)

	Returns the provided number of states from the replay memory.

	Parameters

	n_samples (int) – the number of samples to return.

	Returns

	The requested number of samples.

	
reset()

	Reset the replay memory.

	
initialized

	Whether the replay memory has reached the number of elements that
allows it to be used.

	Type

	Returns

	
size

	The number of elements contained in the replay memory.

	Type

	Returns

Spaces

	
class mushroom.utils.spaces.Box(low, high, shape=None)

	Bases: object

This class implements functions to manage continuous states and action
spaces. It is similar to the Box class in gym.spaces.box.

	
__init__(low, high, shape=None)

	Constructor.

	Parameters

	
	low ([float, np.ndarray]) – the minimum value of each dimension of
the space. If a scalar value is provided, this value is
considered as the minimum one for each dimension. If a
np.ndarray is provided, each i-th element is considered the
minimum value of the i-th dimension;

	high ([float, np.ndarray]) – the maximum value of dimensions of the
space. If a scalar value is provided, this value is considered
as the maximum one for each dimension. If a np.ndarray is
provided, each i-th element is considered the maximum value
of the i-th dimension;

	shape (np.ndarray, None) – the dimension of the space. Must match
the shape of low and high, if they are np.ndarray.

	
low

	The minimum value of each dimension of the space.

	Type

	Returns

	
high

	The maximum value of each dimension of the space.

	Type

	Returns

	
shape

	The dimensions of the space.

	Type

	Returns

	
class mushroom.utils.spaces.Discrete(n)

	Bases: object

This class implements functions to manage discrete states and action
spaces. It is similar to the Discrete class in gym.spaces.discrete.

	
__init__(n)

	Constructor.

	Parameters

	n (int) – the number of values of the space.

	
size

	The number of elements of the space.

	Type

	Returns

	
shape

	The shape of the space that is always (1,).

	Type

	Returns

Table

	
class mushroom.utils.table.Table(shape, initial_value=0.0, dtype=None)

	Bases: object

Table regressor. Used for discrete state and action spaces.

	
__init__(shape, initial_value=0.0, dtype=None)

	Constructor.

	Parameters

	
	shape (tuple) – the shape of the tabular regressor.

	initial_value (float, 0.) – the initial value for each entry of the
tabular regressor.

	dtype ([int, float], None) – the dtype of the table array.

	
fit(x, y)

	
	Parameters

	
	x (int) – index of the table to be filled;

	y (float) – value to fill in the table.

	
predict(*z)

	Predict the output of the table given an input.

	Parameters

	
	*z (list) – list of input of the model. If the table is a Q-table,

	list may contain states or states and actions depending (this) – on whether the call requires to predict all q-values or only
one q-value corresponding to the provided action;

	Returns

	The table prediction.

	
n_actions

	The number of actions considered by the table.

	Type

	Returns

	
shape

	The shape of the table.

	Type

	Returns

	
class mushroom.utils.table.EnsembleTable(n_models, shape, prediction='mean')

	Bases: mushroom.approximators._implementations.ensemble.Ensemble

This class implements functions to manage table ensembles.

	
__init__(n_models, shape, prediction='mean')

	Constructor.

	Parameters

	
	n_models (int) – number of models in the ensemble;

	shape (np.ndarray) – shape of each table in the ensemble;

	prediction (str, 'mean') – type of prediction to return.

	
fit(*z, **fit_params)

	Fit the idx-th model of the ensemble if idx is provided, every
model otherwise.

	Parameters

	
	*z (list) – a list containing the inputs to use to predict with each
regressor of the ensemble;

	**fit_params (dict) – other params.

	
model

	The list of the models in the ensemble.

	Type

	Returns

	
predict(*z, **predict_params)

	Predict.

	Parameters

	
	*z (list) – a list containing the inputs to use to predict with each
regressor of the ensemble;

	**predict_params (dict) – other params.

	Returns

	The predictions of the model.

	
reset()

	Reset the model parameters.

Variance parameters

	
class mushroom.utils.variance_parameters.VarianceParameter(value, exponential=False, min_value=None, tol=1.0, size=(1,))

	Bases: mushroom.utils.parameters.Parameter

Abstract class to implement variance-dependent parameters. A target
parameter is expected.

	
__init__(value, exponential=False, min_value=None, tol=1.0, size=(1,))

	Constructor.

	Parameters

	
	value (float) – initial value of the parameter;

	min_value (float, None) – minimum value that the parameter can reach
when decreasing;

	max_value (float, None) – maximum value that the parameter can reach
when increasing;

	size (tuple, (1,)) – shape of the matrix of parameters; this shape
can be used to have a single parameter for each state or
state-action tuple.

	
_compute(*idx, **kwargs)

	Returns:
The value of the parameter in the provided index.

	
update(*idx, **kwargs)

	Updates the number of visit of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter whose number of visits has to be
updated.

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
class mushroom.utils.variance_parameters.VarianceIncreasingParameter(value, exponential=False, min_value=None, tol=1.0, size=(1,))

	Bases: mushroom.utils.variance_parameters.VarianceParameter

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
__init__(value, exponential=False, min_value=None, tol=1.0, size=(1,))

	Constructor.

	Parameters

	
	value (float) – initial value of the parameter;

	min_value (float, None) – minimum value that the parameter can reach
when decreasing;

	max_value (float, None) – maximum value that the parameter can reach
when increasing;

	size (tuple, (1,)) – shape of the matrix of parameters; this shape
can be used to have a single parameter for each state or
state-action tuple.

	
_compute(*idx, **kwargs)

	Returns:
The value of the parameter in the provided index.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
update(*idx, **kwargs)

	Updates the number of visit of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter whose number of visits has to be
updated.

	
class mushroom.utils.variance_parameters.VarianceDecreasingParameter(value, exponential=False, min_value=None, tol=1.0, size=(1,))

	Bases: mushroom.utils.variance_parameters.VarianceParameter

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
__init__(value, exponential=False, min_value=None, tol=1.0, size=(1,))

	Constructor.

	Parameters

	
	value (float) – initial value of the parameter;

	min_value (float, None) – minimum value that the parameter can reach
when decreasing;

	max_value (float, None) – maximum value that the parameter can reach
when increasing;

	size (tuple, (1,)) – shape of the matrix of parameters; this shape
can be used to have a single parameter for each state or
state-action tuple.

	
_compute(*idx, **kwargs)

	Returns:
The value of the parameter in the provided index.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
update(*idx, **kwargs)

	Updates the number of visit of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter whose number of visits has to be
updated.

	
class mushroom.utils.variance_parameters.WindowedVarianceParameter(value, exponential=False, min_value=None, tol=1.0, window=100, size=(1,))

	Bases: mushroom.utils.parameters.Parameter

	
__init__(value, exponential=False, min_value=None, tol=1.0, window=100, size=(1,))

	Constructor.

	Parameters

	
	value (float) – initial value of the parameter;

	min_value (float, None) – minimum value that the parameter can reach
when decreasing;

	max_value (float, None) – maximum value that the parameter can reach
when increasing;

	size (tuple, (1,)) – shape of the matrix of parameters; this shape
can be used to have a single parameter for each state or
state-action tuple.

	
_compute(*idx, **kwargs)

	Returns:
The value of the parameter in the provided index.

	
update(*idx, **kwargs)

	Updates the number of visit of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter whose number of visits has to be
updated.

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
class mushroom.utils.variance_parameters.WindowedVarianceIncreasingParameter(value, exponential=False, min_value=None, tol=1.0, window=100, size=(1,))

	Bases: mushroom.utils.variance_parameters.WindowedVarianceParameter

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
__init__(value, exponential=False, min_value=None, tol=1.0, window=100, size=(1,))

	Constructor.

	Parameters

	
	value (float) – initial value of the parameter;

	min_value (float, None) – minimum value that the parameter can reach
when decreasing;

	max_value (float, None) – maximum value that the parameter can reach
when increasing;

	size (tuple, (1,)) – shape of the matrix of parameters; this shape
can be used to have a single parameter for each state or
state-action tuple.

	
_compute(*idx, **kwargs)

	Returns:
The value of the parameter in the provided index.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
update(*idx, **kwargs)

	Updates the number of visit of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter whose number of visits has to be
updated.

Viewer

	
class mushroom.utils.viewer.ImageViewer(size, dt)

	Bases: object

Interface to pygame for visualizing plain images. Used in mujoco.py.

	
__init__(size, dt)

	Constructor.

	Parameters

	
	size ([list, tuple]) – size of the displayed image;

	dt (float) – duration of a control step.

	
display(img)

	Display given frame.

	Parameters

	img – image to display.

	
class mushroom.utils.viewer.Viewer(env_width, env_height, width=500, height=500, background=(0, 0, 0))

	Bases: object

Interface to pygame for visualizing mushroom native environments.

	
__init__(env_width, env_height, width=500, height=500, background=(0, 0, 0))

	Constructor.

	Parameters

	
	env_width (int) – The x dimension limit of the desired environment;

	env_height (int) – The y dimension limit of the desired environment;

	width (int, 500) – width of the environment window;

	height (int, 500) – height of the environment window;

	background (tuple, (0, 0, 0)) – background color of the screen.

	
screen

	Property.

	Returns

	The screen created by this viewer.

	
size

	Property.

	Returns

	The size of the screen.

	
line(start, end, color=(255, 255, 255), width=1)

	Draw a line on the screen.

	Parameters

	
	start (np.ndarray) – starting point of the line;

	end (np.ndarray) – end point of the line;

	color (tuple (255, 255, 255)) – color of the line;

	width (int, 1) – width of the line.

	
square(center, angle, edge, color=(255, 255, 255), width=0)

	Draw a square on the screen and apply a roto-translation to it.

	Parameters

	
	center (np.ndarray) – the center of the polygon;

	angle (float) – the rotation to apply to the polygon;

	edge (float) – length of an edge;

	color (tuple, (255, 255, 255)) – the color of the polygon;

	width (int, 0) – the width of the polygon line, 0 to fill the
polygon.

	
polygon(center, angle, points, color=(255, 255, 255), width=0)

	Draw a polygon on the screen and apply a roto-translation to it.

	Parameters

	
	center (np.ndarray) – the center of the polygon;

	angle (float) – the rotation to apply to the polygon;

	points (list) – the points of the polygon w.r.t. the center;

	color (tuple, (255, 255, 255)) – the color of the polygon;

	width (int, 0) – the width of the polygon line, 0 to fill the
polygon.

	
circle(center, radius, color=(255, 255, 255), width=0)

	Draw a circle on the screen.

	Parameters

	
	center (np.ndarray) – the center of the circle;

	radius (float) – the radius of the circle;

	color (tuple, (255, 255, 255)) – the color of the circle;

	width (int, 0) – the width of the circle line, 0 to fill the circle.

	
torque_arrow(center, torque, max_torque, max_radius, color=(255, 255, 255), width=1)

	Draw a torque arrow, i.e. a circular arrow representing a torque. The
radius of the arrow is directly proportional to the torque value.

	Parameters

	
	center (np.ndarray) – the point where the torque is applied;

	torque (float) – the applied torque value;

	max_torque (float) – the maximum torque value;

	max_radius (float) – the radius to use for the maximum torque;

	color (tuple, (255, 255, 255)) – the color of the arrow;

	width (int, 1) – the width of the torque arrow.

	
arrow_head(center, scale, angle, color=(255, 255, 255))

	Draw an harrow head.

	Parameters

	
	center (np.ndarray) – the position of the arrow head;

	scale (float) – scale of the arrow, correspond to the length;

	angle (float) – the angle of rotation of the angle head;

	color (tuple, (255, 255, 255)) – the color of the arrow.

	
background_image(img)

	Use the given image as background for the window, rescaling it
appropriately.

	Parameters

	img – the image to be used.

	
display(s)

	Display current frame and initialize the next frame to the background
color.

	Parameters

	s – time to wait in visualization.

	
close()

	Close the viewer, destroy the window.

Tutorials

	How to make a simple experiment

	How to make an advanced experiment

	How to create a regressor
	Usage of the Regressor interface

	Example

	Generic regressor
	Example

How to make a simple experiment

The main purpose of Mushroom is to simplify the scripting of RL experiments. A
standard example of a script to run an experiment in Mushroom, consists of:

	an initial part where the setting of the experiment are specified;

	a middle part where the experiment is run;

	a final part where operations like evaluation, plot and save can be done.

A RL experiment consists of:

	a MDP;

	an agent;

	a core.

A MDP is the problem to be solved by the agent. It contains the function to move
the agent in the environment according to the provided action.
The MDP can be simply created with:

import numpy as np
from sklearn.ensemble import ExtraTreesRegressor

from mushroom.algorithms.value import FQI
from mushroom.core import Core
from mushroom.environments import CarOnHill
from mushroom.policy import EpsGreedy
from mushroom.utils.dataset import compute_J
from mushroom.utils.parameters import Parameter

mdp = CarOnHill()

A Mushroom agent is the algorithm that is run to learn in the MDP. It consists
of a policy approximator and of the methods to improve the policy during the
learning. It also contains the features to extract in the case of MDP with continuous
state and action spaces. An agent can be defined this way:

Policy
epsilon = Parameter(value=1.)
pi = EpsGreedy(epsilon=epsilon)

Approximator
approximator_params = dict(input_shape=mdp.info.observation_space.shape,
 n_actions=mdp.info.action_space.n,
 n_estimators=50,
 min_samples_split=5,
 min_samples_leaf=2)
approximator = ExtraTreesRegressor

Agent
agent = FQI(approximator, pi, mdp.info, n_iterations=20,
 approximator_params=approximator_params)

This piece of code creates the policy followed by the agent (e.g. \(\epsilon\)-greedy)
with \(\varepsilon = 1\). Then, the policy approximator is created specifying the
parameters to create it and the class (in this case, the ExtraTreesRegressor class
of scikit-learn is used). Eventually, the agent is created calling the algorithm
class and providing the approximator and the policy, together with parameters used
by the algorithm.

To run the experiment, the core module has to be used. This module requires
the agent and the MDP object and contains the function to learn in the MDP and
evaluate the learned policy. It can be created with:

core = Core(agent, mdp)

Once the core has been created, the agent can be trained collecting a dataset and
fitting the policy:

core.learn(n_episodes=1000, n_episodes_per_fit=1000)

In this case, the agent’s policy is fitted only once, after that 1000 episodes
have been collected. This is a common practice in batch RL algorithms such as
FQI where, initially, samples are randomly collected and then the policy is fitted
using the whole dataset of collected samples.

Eventually, some operations to evaluate the learned policy can be done.
This way the user can, for instance, compute the performance of the agent
through the collected rewards during an evaluation run.
Fixing \(\varepsilon = 0\), the greedy policy is applied starting from the
provided initial states, then the average cumulative discounted reward is returned.

pi.set_epsilon(Parameter(0.))
initial_state = np.array([[-.5, 0.]])
dataset = core.evaluate(initial_states=initial_state)

print(compute_J(dataset, gamma=mdp.info.gamma))

How to make an advanced experiment

Continuous MDPs are a challenging class of problems to solve in RL. In these
problems, a tabular regressor is not enough to approximate the Q-function, since
there are an infinite number of states/actions. The solution to solve them is to
use a function approximator (e.g. neural network) fed with the raw values
of states and actions. In the case a linear approximator is used, it is
convenient to enlarge the input space with the space of non-linear features
extracted from the raw values. This way, the linear approximator is often able
to solve the MDPs, despite its simplicity. Many RL algorithms rely on the use of
a linear approximator to solve a MDP, therefore the use of features is very
important.
This tutorial shows how to solve a continuous MDP in Mushroom using an
algorithm that requires the use of a linear approximator.

Initially, the MDP and the policy are created:

import numpy as np

from mushroom.algorithms.value import SARSALambdaContinuous
from mushroom.approximators.parametric import LinearApproximator
from mushroom.core import Core
from mushroom.environments import *
from mushroom.features import Features
from mushroom.features.tiles import Tiles
from mushroom.policy import EpsGreedy
from mushroom.utils.callbacks import CollectDataset
from mushroom.utils.parameters import Parameter

MDP
mdp = Gym(name='MountainCar-v0', horizon=np.inf, gamma=1.)

Policy
epsilon = Parameter(value=0.)
pi = EpsGreedy(epsilon=epsilon)

This is an environment created with the Mushroom interface to the OpenAI Gym
library. Each environment offered by OpenAI Gym can be created this way simply
providing the corresponding id in the name parameter, except for the Atari
that are managed by a separate class.
After the creation of the MDP, the tiles features are created:

Q-function approximator
n_tilings = 10
tilings = Tiles.generate(n_tilings, [10, 10],
 mdp.info.observation_space.low,
 mdp.info.observation_space.high)
features = Features(tilings=tilings)

approximator_params = dict(input_shape=(features.size,),
 output_shape=(mdp.info.action_space.n,),
 n_actions=mdp.info.action_space.n)

In this example, we use sparse coding by means of tiles features. The
generate method generates n_tilings grids of 10x10 tilings evenly spaced
(the way the tilings are created is explained in “Reinforcement Learning: An Introduction”,
Sutton & Barto, 1998). Eventually, the grid is passed to the Features
factory method that returns the features class.

Mushroom offers other type of features such a radial basis functions and
polynomial features. The former have also a faster implementation written in
Tensorflow that can be used transparently.

Then, the agent is created as usual, but this time passing the feature to it.
It is important to notice that the learning rate is divided by the number of
tilings for the correctness of the update (see “Reinforcement Learning: An Introduction”,
Sutton & Barto, 1998 for details). After that, the learning is run as usual:

Agent
learning_rate = Parameter(.1 / n_tilings)

agent = SARSALambdaContinuous(LinearApproximator, pi, mdp.info,
 approximator_params=approximator_params,
 learning_rate=learning_rate,
 lambda_coeff= .9, features=features)

Algorithm
collect_dataset = CollectDataset()
callbacks = [collect_dataset]
core = Core(agent, mdp, callbacks=callbacks)

Train
core.learn(n_episodes=100, n_steps_per_fit=1)

To visualize the learned policy the rendering method of OpenAI Gym is used. To
activate the rendering in the environments that supports it, it is necessary to
set render=True.

Evaluate
core.evaluate(n_episodes=1, render=True)

How to create a regressor

Mushroom offers a high-level interface to build function regressors. Indeed, it
transparently manages regressors for generic functions and Q-function regressors.
The user should not care about the low-level implementation of these regressors and
should only use the Regressor interface. This interface creates a Q-function regressor
or a GenericRegressor depending on whether the n_actions parameter is provided
to the constructor or not.

Usage of the Regressor interface

	When the action space of RL problems is finite and the adopted approach is value-based,

	we want to compute the Q-function of each action. In Mushroom, this is possible using:

	a Q-function regressor with a different approximator for each action (ActionRegressor);

	a single Q-function regressor with a different output for each action (QRegressor).

The QRegressor is suggested when the number of discrete actions is high, due to
memory reasons.

The user can create create a QRegressor or an ActionRegressor, setting
the output_shape parameter of the Regressor interface. If it is set to (1,),
an ActionRegressor is created; otherwise if it is set to the number of discrete actions,
a QRegressor is created.

Example

Initially, the MDP, the policy and the features are created:

import numpy as np

from mushroom.algorithms.value import SARSALambdaContinuous
from mushroom.approximators.parametric import LinearApproximator
from mushroom.core import Core
from mushroom.environments import *
from mushroom.features import Features
from mushroom.features.tiles import Tiles
from mushroom.policy import EpsGreedy
from mushroom.utils.callbacks import CollectDataset
from mushroom.utils.parameters import Parameter

MDP
mdp = Gym(name='MountainCar-v0', horizon=np.inf, gamma=1.)

Policy
epsilon = Parameter(value=0.)
pi = EpsGreedy(epsilon=epsilon)

Q-function approximator
n_tilings = 10
tilings = Tiles.generate(n_tilings, [10, 10],
 mdp.info.observation_space.low,
 mdp.info.observation_space.high)
features = Features(tilings=tilings)

Agent
learning_rate = Parameter(.1 / n_tilings)

The following snippet, sets the output shape of the regressor to the number of
actions, creating a QRegressor:

approximator_params = dict(input_shape=(features.size,),
 output_shape=(mdp.info.action_space.n,),
 n_actions=mdp.info.action_space.n)

If you prefer to use an ActionRegressor, simply set the number of actions to (1,):

approximator_params = dict(input_shape=(features.size,),
 output_shape=(1,),
 n_actions=mdp.info.action_space.n)

Then, the rest of the code fits the approximator and runs the evaluation rendering
the behaviour of the agent:

agent = SARSALambdaContinuous(LinearApproximator, pi, mdp.info,
 approximator_params=approximator_params,
 learning_rate=learning_rate,
 lambda_coeff= .9, features=features)

Algorithm
collect_dataset = CollectDataset()
callbacks = [collect_dataset]
core = Core(agent, mdp, callbacks=callbacks)

Train
core.learn(n_episodes=100, n_steps_per_fit=1)

Evaluate
core.evaluate(n_episodes=1, render=True)

Generic regressor

Whenever the n_actions parameter is not provided, the Regressor interface creates
a GenericRegressor. This regressor can be used for general purposes and it is
more flexible to be used. It is commonly used in policy search algorithms.

Example

Create a dataset of points distributed on a line with random gaussian noise.

import numpy as np
from matplotlib import pyplot as plt

from mushroom.approximators import Regressor
from mushroom.approximators.parametric import LinearApproximator

x = np.arange(10).reshape(-1, 1)

intercept = 10
noise = np.random.randn(10, 1) * 1
y = 2 * x + intercept + noise

To fit the intercept, polynomial features of degree 1 are created by hand:

phi = np.concatenate((np.ones(10).reshape(-1, 1), x), axis=1)

The regressor is then created and fit (note that n_actions is not provided):

regressor = Regressor(LinearApproximator,
 input_shape=(2,),
 output_shape=(1,))

regressor.fit(phi, y)

Eventually, the approximated function of the regressor is plotted together with
the target points. Moreover, the weights and the gradient in point 5 of the linear approximator
are printed.

print('Weights: ' + str(regressor.get_weights()))
print('Gradient: ' + str(regressor.diff(np.array([[5.]]))))

plt.scatter(x, y)
plt.plot(x, regressor.predict(phi))
plt.show()

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mushroom	

 	
 	
 mushroom.algorithms.actor_critic.ddpg	

 	
 	
 mushroom.algorithms.actor_critic.dpg	

 	
 	
 mushroom.algorithms.actor_critic.stochastic_actor_critic	

 	
 	
 mushroom.algorithms.agent	

 	
 	
 mushroom.algorithms.policy_search.black_box_optimization	

 	
 	
 mushroom.algorithms.policy_search.policy_gradient	

 	
 	
 mushroom.algorithms.value.batch_td	

 	
 	
 mushroom.algorithms.value.dqn	

 	
 	
 mushroom.algorithms.value.td	

 	
 	
 mushroom.approximators.parametric.linear	

 	
 	
 mushroom.approximators.parametric.pytorch_network	

 	
 	
 mushroom.approximators.regressor	

 	
 	
 mushroom.core.core	

 	
 	
 mushroom.distributions.distribution	

 	
 	
 mushroom.distributions.gaussian	

 	
 	
 mushroom.environments.atari	

 	
 	
 mushroom.environments.car_on_hill	

 	
 	
 mushroom.environments.environment	

 	
 	
 mushroom.environments.finite_mdp	

 	
 	
 mushroom.environments.generators.grid_world	

 	
 	
 mushroom.environments.generators.simple_chain	

 	
 	
 mushroom.environments.generators.taxi	

 	
 	
 mushroom.environments.grid_world	

 	
 	
 mushroom.environments.gym_env	

 	
 	
 mushroom.environments.inverted_pendulum	

 	
 	
 mushroom.environments.lqr	

 	
 	
 mushroom.environments.segway	

 	
 	
 mushroom.environments.ship_steering	

 	
 	
 mushroom.features._implementations.features_implementation	

 	
 	
 mushroom.features.basis.fourier	

 	
 	
 mushroom.features.basis.gaussian_rbf	

 	
 	
 mushroom.features.basis.polynomial	

 	
 	
 mushroom.features.features	

 	
 	
 mushroom.features.tensors.gaussian_tensor	

 	
 	
 mushroom.features.tiles.tiles	

 	
 	
 mushroom.policy.gaussian_policy	

 	
 	
 mushroom.policy.policy	

 	
 	
 mushroom.policy.td_policy	

 	
 	
 mushroom.solvers.dynamic_programming	

 	
 	
 mushroom.utils.angles	

 	
 	
 mushroom.utils.callbacks	

 	
 	
 mushroom.utils.dataset	

 	
 	
 mushroom.utils.eligibility_trace	

 	
 	
 mushroom.utils.features	

 	
 	
 mushroom.utils.folder	

 	
 	
 mushroom.utils.minibatches	

 	
 	
 mushroom.utils.numerical_gradient	

 	
 	
 mushroom.utils.parameters	

 	
 	
 mushroom.utils.preprocessor	

 	
 	
 mushroom.utils.replay_memory	

 	
 	
 mushroom.utils.spaces	

 	
 	
 mushroom.utils.table	

 	
 	
 mushroom.utils.variance_parameters	

 	
 	
 mushroom.utils.viewer	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__call__() (mushroom.algorithms.actor_critic.ddpg.ActorLoss method)

 	(mushroom.algorithms.actor_critic.ddpg.ActorLossTD3 method)

 	(mushroom.algorithms.value.dqn.CategoricalNetwork method)

 	(mushroom.approximators.regressor.Regressor method)

 	(mushroom.distributions.distribution.Distribution method)

 	(mushroom.distributions.gaussian.GaussianCholeskyDistribution method)

 	(mushroom.distributions.gaussian.GaussianDiagonalDistribution method)

 	(mushroom.distributions.gaussian.GaussianDistribution method)

 	(mushroom.features.basis.fourier.FourierBasis method)

 	(mushroom.features.basis.gaussian_rbf.GaussianRBF method)

 	(mushroom.features.basis.polynomial.PolynomialBasis method)

 	(mushroom.features.tiles.tiles.Tiles method)

 	(mushroom.policy.gaussian_policy.DiagonalGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.GaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateLogStdGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateStdGaussianPolicy method)

 	(mushroom.policy.policy.ParametricPolicy method)

 	(mushroom.policy.policy.Policy method)

 	(mushroom.policy.td_policy.Boltzmann method)

 	(mushroom.policy.td_policy.EpsGreedy method)

 	(mushroom.policy.td_policy.Mellowmax method)

 	(mushroom.policy.td_policy.TDPolicy method)

 	(mushroom.utils.callbacks.CollectDataset method)

 	(mushroom.utils.callbacks.CollectMaxQ method)

 	(mushroom.utils.callbacks.CollectParameters method)

 	(mushroom.utils.callbacks.CollectQ method)

 	(mushroom.utils.parameters.AdaptiveParameter method)

 	(mushroom.utils.parameters.ExponentialParameter method)

 	(mushroom.utils.parameters.LinearParameter method)

 	(mushroom.utils.parameters.Parameter method)

 	(mushroom.utils.preprocessor.Preprocessor method)

 	(mushroom.utils.variance_parameters.VarianceDecreasingParameter method)

 	(mushroom.utils.variance_parameters.VarianceIncreasingParameter method)

 	(mushroom.utils.variance_parameters.VarianceParameter method)

 	(mushroom.utils.variance_parameters.WindowedVarianceIncreasingParameter method)

 	(mushroom.utils.variance_parameters.WindowedVarianceParameter method)

 	__init__ (mushroom.distributions.distribution.Distribution attribute)

 	(mushroom.policy.policy.ParametricPolicy attribute)

 	(mushroom.policy.policy.Policy attribute)

 	__init__() (mushroom.algorithms.actor_critic.ddpg.ActorLoss method)

 	(mushroom.algorithms.actor_critic.ddpg.ActorLossTD3 method)

 	(mushroom.algorithms.actor_critic.ddpg.DDPG method)

 	(mushroom.algorithms.actor_critic.ddpg.TD3 method)

 	(mushroom.algorithms.actor_critic.dpg.COPDAC_Q method)

 	(mushroom.algorithms.actor_critic.stochastic_actor_critic.SAC method)

 	(mushroom.algorithms.actor_critic.stochastic_actor_critic.SAC_AVG method)

 	(mushroom.algorithms.agent.Agent method)

 	(mushroom.algorithms.policy_search.black_box_optimization.BlackBoxOptimization method)

 	(mushroom.algorithms.policy_search.black_box_optimization.PGPE method)

 	(mushroom.algorithms.policy_search.black_box_optimization.REPS method)

 	(mushroom.algorithms.policy_search.black_box_optimization.RWR method)

 	(mushroom.algorithms.policy_search.policy_gradient.GPOMDP method)

 	(mushroom.algorithms.policy_search.policy_gradient.PolicyGradient method)

 	(mushroom.algorithms.policy_search.policy_gradient.REINFORCE method)

 	(mushroom.algorithms.policy_search.policy_gradient.eNAC method)

 	(mushroom.algorithms.value.batch_td.BatchTD method)

 	(mushroom.algorithms.value.batch_td.DoubleFQI method)

 	(mushroom.algorithms.value.batch_td.FQI method)

 	(mushroom.algorithms.value.batch_td.LSPI method)

 	(mushroom.algorithms.value.dqn.AveragedDQN method)

 	(mushroom.algorithms.value.dqn.CategoricalDQN method)

 	(mushroom.algorithms.value.dqn.CategoricalNetwork method)

 	(mushroom.algorithms.value.dqn.DQN method)

 	(mushroom.algorithms.value.dqn.DoubleDQN method)

 	(mushroom.algorithms.value.td.DoubleQLearning method)

 	(mushroom.algorithms.value.td.ExpectedSARSA method)

 	(mushroom.algorithms.value.td.QLearning method)

 	(mushroom.algorithms.value.td.RLearning method)

 	(mushroom.algorithms.value.td.RQLearning method)

 	(mushroom.algorithms.value.td.SARSA method)

 	(mushroom.algorithms.value.td.SARSALambdaContinuous method)

 	(mushroom.algorithms.value.td.SARSALambdaDiscrete method)

 	(mushroom.algorithms.value.td.SpeedyQLearning method)

 	(mushroom.algorithms.value.td.TD method)

 	(mushroom.algorithms.value.td.TrueOnlineSARSALambda method)

 	(mushroom.algorithms.value.td.WeightedQLearning method)

 	(mushroom.approximators.parametric.linear.LinearApproximator method)

 	(mushroom.approximators.parametric.pytorch_network.PyTorchApproximator method)

 	(mushroom.approximators.regressor.Regressor method)

 	(mushroom.core.core.Core method)

 	(mushroom.distributions.gaussian.GaussianCholeskyDistribution method)

 	(mushroom.distributions.gaussian.GaussianDiagonalDistribution method)

 	(mushroom.distributions.gaussian.GaussianDistribution method)

 	(mushroom.environments.atari.Atari method)

 	(mushroom.environments.atari.LazyFrames method)

 	(mushroom.environments.atari.MaxAndSkip method)

 	(mushroom.environments.car_on_hill.CarOnHill method)

 	(mushroom.environments.environment.MDPInfo method)

 	(mushroom.environments.finite_mdp.FiniteMDP method)

 	(mushroom.environments.grid_world.AbstractGridWorld method)

 	(mushroom.environments.grid_world.GridWorld method)

 	(mushroom.environments.grid_world.GridWorldVanHasselt method)

 	(mushroom.environments.gym_env.Gym method)

 	(mushroom.environments.inverted_pendulum.InvertedPendulum method)

 	(mushroom.environments.inverted_pendulum.InvertedPendulumDiscrete method)

 	(mushroom.environments.lqr.LQR method)

 	(mushroom.environments.segway.Segway method)

 	(mushroom.environments.ship_steering.ShipSteering method)

 	(mushroom.features.basis.fourier.FourierBasis method)

 	(mushroom.features.basis.gaussian_rbf.GaussianRBF method)

 	(mushroom.features.basis.polynomial.PolynomialBasis method)

 	(mushroom.features.tensors.gaussian_tensor.PyTorchGaussianRBF method)

 	(mushroom.features.tiles.tiles.Tiles method)

 	(mushroom.policy.gaussian_policy.DiagonalGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.GaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateLogStdGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateStdGaussianPolicy method)

 	(mushroom.policy.td_policy.Boltzmann method)

 	(mushroom.policy.td_policy.EpsGreedy method)

 	(mushroom.policy.td_policy.Mellowmax method)

 	(mushroom.policy.td_policy.TDPolicy method)

 	(mushroom.utils.callbacks.CollectDataset method)

 	(mushroom.utils.callbacks.CollectMaxQ method)

 	(mushroom.utils.callbacks.CollectParameters method)

 	(mushroom.utils.callbacks.CollectQ method)

 	(mushroom.utils.eligibility_trace.AccumulatingTrace method)

 	(mushroom.utils.eligibility_trace.ReplacingTrace method)

 	(mushroom.utils.parameters.AdaptiveParameter method)

 	(mushroom.utils.parameters.ExponentialParameter method)

 	(mushroom.utils.parameters.LinearParameter method)

 	(mushroom.utils.parameters.Parameter method)

 	(mushroom.utils.preprocessor.Binarizer method)

 	(mushroom.utils.preprocessor.Filter method)

 	(mushroom.utils.preprocessor.Scaler method)

 	(mushroom.utils.replay_memory.ReplayMemory method)

 	(mushroom.utils.spaces.Box method)

 	(mushroom.utils.spaces.Discrete method)

 	(mushroom.utils.table.EnsembleTable method)

 	(mushroom.utils.table.Table method)

 	(mushroom.utils.variance_parameters.VarianceDecreasingParameter method)

 	(mushroom.utils.variance_parameters.VarianceIncreasingParameter method)

 	(mushroom.utils.variance_parameters.VarianceParameter method)

 	(mushroom.utils.variance_parameters.WindowedVarianceIncreasingParameter method)

 	(mushroom.utils.variance_parameters.WindowedVarianceParameter method)

 	(mushroom.utils.viewer.ImageViewer method)

 	(mushroom.utils.viewer.Viewer method)

 	
 	_bound() (mushroom.environments.atari.Atari static method)

 	(mushroom.environments.car_on_hill.CarOnHill static method)

 	(mushroom.environments.finite_mdp.FiniteMDP static method)

 	(mushroom.environments.grid_world.AbstractGridWorld static method)

 	(mushroom.environments.grid_world.GridWorld static method)

 	(mushroom.environments.grid_world.GridWorldVanHasselt static method)

 	(mushroom.environments.gym_env.Gym static method)

 	(mushroom.environments.inverted_pendulum.InvertedPendulum static method)

 	(mushroom.environments.inverted_pendulum.InvertedPendulumDiscrete static method)

 	(mushroom.environments.lqr.LQR static method)

 	(mushroom.environments.segway.Segway static method)

 	(mushroom.environments.ship_steering.ShipSteering static method)

 	_compute() (mushroom.utils.parameters.ExponentialParameter method)

 	(mushroom.utils.parameters.LinearParameter method)

 	(mushroom.utils.parameters.Parameter method)

 	(mushroom.utils.variance_parameters.VarianceDecreasingParameter method)

 	(mushroom.utils.variance_parameters.VarianceIncreasingParameter method)

 	(mushroom.utils.variance_parameters.VarianceParameter method)

 	(mushroom.utils.variance_parameters.WindowedVarianceIncreasingParameter method)

 	(mushroom.utils.variance_parameters.WindowedVarianceParameter method)

 	_compute_exponents() (mushroom.features.basis.polynomial.PolynomialBasis static method)

 	_compute_gradient() (mushroom.algorithms.policy_search.policy_gradient.eNAC method)

 	(mushroom.algorithms.policy_search.policy_gradient.GPOMDP method)

 	(mushroom.algorithms.policy_search.policy_gradient.PolicyGradient method)

 	(mushroom.algorithms.policy_search.policy_gradient.REINFORCE method)

 	_episode_end_update() (mushroom.algorithms.policy_search.policy_gradient.eNAC method)

 	(mushroom.algorithms.policy_search.policy_gradient.GPOMDP method)

 	(mushroom.algorithms.policy_search.policy_gradient.PolicyGradient method)

 	(mushroom.algorithms.policy_search.policy_gradient.REINFORCE method)

 	_fit() (mushroom.algorithms.value.batch_td.DoubleFQI method)

 	(mushroom.algorithms.value.batch_td.FQI method)

 	_fit_boosted() (mushroom.algorithms.value.batch_td.DoubleFQI method)

 	(mushroom.algorithms.value.batch_td.FQI method)

 	_init_target() (mushroom.algorithms.actor_critic.ddpg.DDPG method)

 	(mushroom.algorithms.actor_critic.ddpg.TD3 method)

 	_init_update() (mushroom.algorithms.policy_search.policy_gradient.eNAC method)

 	(mushroom.algorithms.policy_search.policy_gradient.GPOMDP method)

 	(mushroom.algorithms.policy_search.policy_gradient.PolicyGradient method)

 	(mushroom.algorithms.policy_search.policy_gradient.REINFORCE method)

 	_next_q() (mushroom.algorithms.actor_critic.ddpg.DDPG method)

 	(mushroom.algorithms.actor_critic.ddpg.TD3 method)

 	(mushroom.algorithms.value.dqn.AveragedDQN method)

 	(mushroom.algorithms.value.dqn.CategoricalDQN method)

 	(mushroom.algorithms.value.dqn.DQN method)

 	(mushroom.algorithms.value.dqn.DoubleDQN method)

 	(mushroom.algorithms.value.td.RQLearning method)

 	(mushroom.algorithms.value.td.WeightedQLearning method)

 	_parse() (mushroom.algorithms.policy_search.policy_gradient.eNAC method)

 	(mushroom.algorithms.policy_search.policy_gradient.GPOMDP method)

 	(mushroom.algorithms.policy_search.policy_gradient.PolicyGradient method)

 	(mushroom.algorithms.policy_search.policy_gradient.REINFORCE method)

 	(mushroom.algorithms.value.td.DoubleQLearning static method)

 	(mushroom.algorithms.value.td.ExpectedSARSA static method)

 	(mushroom.algorithms.value.td.QLearning static method)

 	(mushroom.algorithms.value.td.RLearning static method)

 	(mushroom.algorithms.value.td.RQLearning static method)

 	(mushroom.algorithms.value.td.SARSA static method)

 	(mushroom.algorithms.value.td.SARSALambdaContinuous static method)

 	(mushroom.algorithms.value.td.SARSALambdaDiscrete static method)

 	(mushroom.algorithms.value.td.SpeedyQLearning static method)

 	(mushroom.algorithms.value.td.TD static method)

 	(mushroom.algorithms.value.td.TrueOnlineSARSALambda static method)

 	(mushroom.algorithms.value.td.WeightedQLearning static method)

 	_step() (mushroom.core.core.Core method)

 	_step_update() (mushroom.algorithms.policy_search.policy_gradient.eNAC method)

 	(mushroom.algorithms.policy_search.policy_gradient.GPOMDP method)

 	(mushroom.algorithms.policy_search.policy_gradient.PolicyGradient method)

 	(mushroom.algorithms.policy_search.policy_gradient.REINFORCE method)

 	_update() (mushroom.algorithms.policy_search.black_box_optimization.BlackBoxOptimization method)

 	(mushroom.algorithms.policy_search.black_box_optimization.PGPE method)

 	(mushroom.algorithms.policy_search.black_box_optimization.REPS method)

 	(mushroom.algorithms.policy_search.black_box_optimization.RWR method)

 	(mushroom.algorithms.value.td.DoubleQLearning method)

 	(mushroom.algorithms.value.td.ExpectedSARSA method)

 	(mushroom.algorithms.value.td.QLearning method)

 	(mushroom.algorithms.value.td.RLearning method)

 	(mushroom.algorithms.value.td.RQLearning method)

 	(mushroom.algorithms.value.td.SARSA method)

 	(mushroom.algorithms.value.td.SARSALambdaContinuous method)

 	(mushroom.algorithms.value.td.SARSALambdaDiscrete method)

 	(mushroom.algorithms.value.td.SpeedyQLearning method)

 	(mushroom.algorithms.value.td.TD method)

 	(mushroom.algorithms.value.td.TrueOnlineSARSALambda method)

 	(mushroom.algorithms.value.td.WeightedQLearning method)

 	_update_parameters() (mushroom.algorithms.policy_search.policy_gradient.eNAC method)

 	(mushroom.algorithms.policy_search.policy_gradient.GPOMDP method)

 	(mushroom.algorithms.policy_search.policy_gradient.PolicyGradient method)

 	(mushroom.algorithms.policy_search.policy_gradient.REINFORCE method)

 	_update_target() (mushroom.algorithms.actor_critic.ddpg.DDPG method)

 	(mushroom.algorithms.actor_critic.ddpg.TD3 method)

 	(mushroom.algorithms.value.dqn.AveragedDQN method)

 	(mushroom.algorithms.value.dqn.CategoricalDQN method)

 	(mushroom.algorithms.value.dqn.DQN method)

 	(mushroom.algorithms.value.dqn.DoubleDQN method)

A

 	
 	AbstractGridWorld (class in mushroom.environments.grid_world)

 	AccumulatingTrace (class in mushroom.utils.eligibility_trace)

 	ActorLoss (class in mushroom.algorithms.actor_critic.ddpg)

 	ActorLossTD3 (class in mushroom.algorithms.actor_critic.ddpg)

 	AdaptiveParameter (class in mushroom.utils.parameters)

 	
 	add() (mushroom.utils.replay_memory.ReplayMemory method)

 	Agent (class in mushroom.algorithms.agent)

 	arrow_head() (mushroom.utils.viewer.Viewer method)

 	Atari (class in mushroom.environments.atari)

 	AveragedDQN (class in mushroom.algorithms.value.dqn)

B

 	
 	background_image() (mushroom.utils.viewer.Viewer method)

 	BatchTD (class in mushroom.algorithms.value.batch_td)

 	Binarizer (class in mushroom.utils.preprocessor)

 	
 	BlackBoxOptimization (class in mushroom.algorithms.policy_search.black_box_optimization)

 	Boltzmann (class in mushroom.policy.td_policy)

 	Box (class in mushroom.utils.spaces)

C

 	
 	CarOnHill (class in mushroom.environments.car_on_hill)

 	CategoricalDQN (class in mushroom.algorithms.value.dqn)

 	CategoricalNetwork (class in mushroom.algorithms.value.dqn)

 	circle() (mushroom.utils.viewer.Viewer method)

 	clean() (mushroom.utils.callbacks.CollectDataset method)

 	close() (mushroom.environments.atari.MaxAndSkip method)

 	(mushroom.utils.viewer.Viewer method)

 	CollectDataset (class in mushroom.utils.callbacks)

 	CollectMaxQ (class in mushroom.utils.callbacks)

 	CollectParameters (class in mushroom.utils.callbacks)

 	CollectQ (class in mushroom.utils.callbacks)

 	
 	compute_J() (in module mushroom.utils.dataset)

 	compute_mu() (in module mushroom.environments.generators.grid_world)

 	(in module mushroom.environments.generators.taxi)

 	compute_probabilities() (in module mushroom.environments.generators.grid_world)

 	(in module mushroom.environments.generators.simple_chain)

 	(in module mushroom.environments.generators.taxi)

 	compute_reward() (in module mushroom.environments.generators.grid_world)

 	(in module mushroom.environments.generators.simple_chain)

 	(in module mushroom.environments.generators.taxi)

 	compute_scores() (in module mushroom.utils.dataset)

 	COPDAC_Q (class in mushroom.algorithms.actor_critic.dpg)

 	Core (class in mushroom.core.core)

D

 	
 	DDPG (class in mushroom.algorithms.actor_critic.ddpg)

 	DiagonalGaussianPolicy (class in mushroom.policy.gaussian_policy)

 	diff() (mushroom.approximators.regressor.Regressor method)

 	(mushroom.distributions.distribution.Distribution method)

 	(mushroom.distributions.gaussian.GaussianCholeskyDistribution method)

 	(mushroom.distributions.gaussian.GaussianDiagonalDistribution method)

 	(mushroom.distributions.gaussian.GaussianDistribution method)

 	(mushroom.policy.gaussian_policy.DiagonalGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.GaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateLogStdGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateStdGaussianPolicy method)

 	(mushroom.policy.policy.ParametricPolicy method)

 	diff_log() (mushroom.distributions.distribution.Distribution method)

 	(mushroom.distributions.gaussian.GaussianCholeskyDistribution method)

 	(mushroom.distributions.gaussian.GaussianDiagonalDistribution method)

 	(mushroom.distributions.gaussian.GaussianDistribution method)

 	(mushroom.policy.gaussian_policy.DiagonalGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.GaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateLogStdGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateStdGaussianPolicy method)

 	(mushroom.policy.policy.ParametricPolicy method)

 	Discrete (class in mushroom.utils.spaces)

 	display() (mushroom.utils.viewer.ImageViewer method)

 	(mushroom.utils.viewer.Viewer method)

 	Distribution (class in mushroom.distributions.distribution)

 	DoubleDQN (class in mushroom.algorithms.value.dqn)

 	DoubleFQI (class in mushroom.algorithms.value.batch_td)

 	DoubleQLearning (class in mushroom.algorithms.value.td)

 	DQN (class in mushroom.algorithms.value.dqn)

 	draw_action() (mushroom.algorithms.actor_critic.ddpg.DDPG method)

 	(mushroom.algorithms.actor_critic.ddpg.TD3 method)

 	(mushroom.algorithms.actor_critic.dpg.COPDAC_Q method)

 	(mushroom.algorithms.actor_critic.stochastic_actor_critic.SAC method)

 	(mushroom.algorithms.actor_critic.stochastic_actor_critic.SAC_AVG method)

 	(mushroom.algorithms.agent.Agent method)

 	(mushroom.algorithms.policy_search.black_box_optimization.BlackBoxOptimization method)

 	(mushroom.algorithms.policy_search.black_box_optimization.PGPE method)

 	(mushroom.algorithms.policy_search.black_box_optimization.REPS method)

 	(mushroom.algorithms.policy_search.black_box_optimization.RWR method)

 	(mushroom.algorithms.policy_search.policy_gradient.GPOMDP method)

 	(mushroom.algorithms.policy_search.policy_gradient.PolicyGradient method)

 	(mushroom.algorithms.policy_search.policy_gradient.REINFORCE method)

 	(mushroom.algorithms.policy_search.policy_gradient.eNAC method)

 	(mushroom.algorithms.value.batch_td.BatchTD method)

 	(mushroom.algorithms.value.batch_td.DoubleFQI method)

 	(mushroom.algorithms.value.batch_td.FQI method)

 	(mushroom.algorithms.value.batch_td.LSPI method)

 	(mushroom.algorithms.value.dqn.AveragedDQN method)

 	(mushroom.algorithms.value.dqn.CategoricalDQN method)

 	(mushroom.algorithms.value.dqn.DQN method)

 	(mushroom.algorithms.value.dqn.DoubleDQN method)

 	(mushroom.algorithms.value.td.DoubleQLearning method)

 	(mushroom.algorithms.value.td.ExpectedSARSA method)

 	(mushroom.algorithms.value.td.QLearning method)

 	(mushroom.algorithms.value.td.RLearning method)

 	(mushroom.algorithms.value.td.RQLearning method)

 	(mushroom.algorithms.value.td.SARSA method)

 	(mushroom.algorithms.value.td.SARSALambdaContinuous method)

 	(mushroom.algorithms.value.td.SARSALambdaDiscrete method)

 	(mushroom.algorithms.value.td.SpeedyQLearning method)

 	(mushroom.algorithms.value.td.TD method)

 	(mushroom.algorithms.value.td.TrueOnlineSARSALambda method)

 	(mushroom.algorithms.value.td.WeightedQLearning method)

 	(mushroom.policy.gaussian_policy.DiagonalGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.GaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateLogStdGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateStdGaussianPolicy method)

 	(mushroom.policy.policy.ParametricPolicy method)

 	(mushroom.policy.policy.Policy method)

 	(mushroom.policy.td_policy.Boltzmann method)

 	(mushroom.policy.td_policy.EpsGreedy method)

 	(mushroom.policy.td_policy.Mellowmax method)

 	(mushroom.policy.td_policy.TDPolicy method)

E

 	
 	EligibilityTrace() (in module mushroom.utils.eligibility_trace)

 	eNAC (class in mushroom.algorithms.policy_search.policy_gradient)

 	EnsembleTable (class in mushroom.utils.table)

 	episode_start() (mushroom.algorithms.actor_critic.ddpg.DDPG method)

 	(mushroom.algorithms.actor_critic.ddpg.TD3 method)

 	(mushroom.algorithms.actor_critic.dpg.COPDAC_Q method)

 	(mushroom.algorithms.actor_critic.stochastic_actor_critic.SAC method)

 	(mushroom.algorithms.actor_critic.stochastic_actor_critic.SAC_AVG method)

 	(mushroom.algorithms.agent.Agent method)

 	(mushroom.algorithms.policy_search.black_box_optimization.BlackBoxOptimization method)

 	(mushroom.algorithms.policy_search.black_box_optimization.PGPE method)

 	(mushroom.algorithms.policy_search.black_box_optimization.REPS method)

 	(mushroom.algorithms.policy_search.black_box_optimization.RWR method)

 	(mushroom.algorithms.policy_search.policy_gradient.GPOMDP method)

 	(mushroom.algorithms.policy_search.policy_gradient.PolicyGradient method)

 	(mushroom.algorithms.policy_search.policy_gradient.REINFORCE method)

 	(mushroom.algorithms.policy_search.policy_gradient.eNAC method)

 	(mushroom.algorithms.value.batch_td.BatchTD method)

 	(mushroom.algorithms.value.batch_td.DoubleFQI method)

 	(mushroom.algorithms.value.batch_td.FQI method)

 	(mushroom.algorithms.value.batch_td.LSPI method)

 	(mushroom.algorithms.value.dqn.AveragedDQN method)

 	(mushroom.algorithms.value.dqn.CategoricalDQN method)

 	(mushroom.algorithms.value.dqn.DQN method)

 	(mushroom.algorithms.value.dqn.DoubleDQN method)

 	(mushroom.algorithms.value.td.DoubleQLearning method)

 	(mushroom.algorithms.value.td.ExpectedSARSA method)

 	(mushroom.algorithms.value.td.QLearning method)

 	(mushroom.algorithms.value.td.RLearning method)

 	(mushroom.algorithms.value.td.RQLearning method)

 	(mushroom.algorithms.value.td.SARSA method)

 	(mushroom.algorithms.value.td.SARSALambdaContinuous method)

 	(mushroom.algorithms.value.td.SARSALambdaDiscrete method)

 	(mushroom.algorithms.value.td.SpeedyQLearning method)

 	(mushroom.algorithms.value.td.TD method)

 	(mushroom.algorithms.value.td.TrueOnlineSARSALambda method)

 	(mushroom.algorithms.value.td.WeightedQLearning method)

 	
 	episodes_length() (in module mushroom.utils.dataset)

 	EpsGreedy (class in mushroom.policy.td_policy)

 	evaluate() (mushroom.core.core.Core method)

 	ExpectedSARSA (class in mushroom.algorithms.value.td)

 	ExponentialParameter (class in mushroom.utils.parameters)

F

 	
 	Features() (in module mushroom.features.features)

 	Filter (class in mushroom.utils.preprocessor)

 	FiniteMDP (class in mushroom.environments.finite_mdp)

 	fit() (mushroom.algorithms.actor_critic.ddpg.DDPG method)

 	(mushroom.algorithms.actor_critic.ddpg.TD3 method)

 	(mushroom.algorithms.actor_critic.dpg.COPDAC_Q method)

 	(mushroom.algorithms.actor_critic.stochastic_actor_critic.SAC method)

 	(mushroom.algorithms.actor_critic.stochastic_actor_critic.SAC_AVG method)

 	(mushroom.algorithms.agent.Agent method)

 	(mushroom.algorithms.policy_search.black_box_optimization.BlackBoxOptimization method)

 	(mushroom.algorithms.policy_search.black_box_optimization.PGPE method)

 	(mushroom.algorithms.policy_search.black_box_optimization.REPS method)

 	(mushroom.algorithms.policy_search.black_box_optimization.RWR method)

 	(mushroom.algorithms.policy_search.policy_gradient.GPOMDP method)

 	(mushroom.algorithms.policy_search.policy_gradient.PolicyGradient method)

 	(mushroom.algorithms.policy_search.policy_gradient.REINFORCE method)

 	(mushroom.algorithms.policy_search.policy_gradient.eNAC method)

 	(mushroom.algorithms.value.batch_td.BatchTD method)

 	(mushroom.algorithms.value.batch_td.DoubleFQI method)

 	(mushroom.algorithms.value.batch_td.FQI method)

 	(mushroom.algorithms.value.batch_td.LSPI method)

 	(mushroom.algorithms.value.dqn.AveragedDQN method)

 	(mushroom.algorithms.value.dqn.CategoricalDQN method)

 	(mushroom.algorithms.value.dqn.DQN method)

 	(mushroom.algorithms.value.dqn.DoubleDQN method)

 	(mushroom.algorithms.value.td.DoubleQLearning method)

 	(mushroom.algorithms.value.td.ExpectedSARSA method)

 	(mushroom.algorithms.value.td.QLearning method)

 	(mushroom.algorithms.value.td.RLearning method)

 	(mushroom.algorithms.value.td.RQLearning method)

 	(mushroom.algorithms.value.td.SARSA method)

 	(mushroom.algorithms.value.td.SARSALambdaContinuous method)

 	(mushroom.algorithms.value.td.SARSALambdaDiscrete method)

 	(mushroom.algorithms.value.td.SpeedyQLearning method)

 	(mushroom.algorithms.value.td.TD method)

 	(mushroom.algorithms.value.td.TrueOnlineSARSALambda method)

 	(mushroom.algorithms.value.td.WeightedQLearning method)

 	(mushroom.approximators.parametric.linear.LinearApproximator method)

 	(mushroom.approximators.regressor.Regressor method)

 	(mushroom.utils.eligibility_trace.AccumulatingTrace method)

 	(mushroom.utils.eligibility_trace.ReplacingTrace method)

 	(mushroom.utils.table.EnsembleTable method)

 	(mushroom.utils.table.Table method)

 	
 	force_symlink() (in module mushroom.utils.folder)

 	FourierBasis (class in mushroom.features.basis.fourier)

 	FQI (class in mushroom.algorithms.value.batch_td)

G

 	
 	GaussianCholeskyDistribution (class in mushroom.distributions.gaussian)

 	GaussianDiagonalDistribution (class in mushroom.distributions.gaussian)

 	GaussianDistribution (class in mushroom.distributions.gaussian)

 	GaussianPolicy (class in mushroom.policy.gaussian_policy)

 	GaussianRBF (class in mushroom.features.basis.gaussian_rbf)

 	generate() (mushroom.environments.lqr.LQR static method)

 	(mushroom.features.basis.fourier.FourierBasis static method)

 	(mushroom.features.basis.gaussian_rbf.GaussianRBF static method)

 	(mushroom.features.basis.polynomial.PolynomialBasis static method)

 	(mushroom.features.tensors.gaussian_tensor.PyTorchGaussianRBF static method)

 	(mushroom.features.tiles.tiles.Tiles static method)

 	generate_grid_world() (in module mushroom.environments.generators.grid_world)

 	generate_simple_chain() (in module mushroom.environments.generators.simple_chain)

 	generate_taxi() (in module mushroom.environments.generators.taxi)

 	get() (mushroom.utils.callbacks.CollectDataset method)

 	(mushroom.utils.replay_memory.ReplayMemory method)

 	get_action_features() (in module mushroom.features.features)

 	get_parameters() (mushroom.distributions.distribution.Distribution method)

 	(mushroom.distributions.gaussian.GaussianCholeskyDistribution method)

 	(mushroom.distributions.gaussian.GaussianDiagonalDistribution method)

 	(mushroom.distributions.gaussian.GaussianDistribution method)

 	get_q() (mushroom.policy.td_policy.Boltzmann method)

 	(mushroom.policy.td_policy.EpsGreedy method)

 	(mushroom.policy.td_policy.Mellowmax method)

 	(mushroom.policy.td_policy.TDPolicy method)

 	
 	get_value() (mushroom.utils.parameters.ExponentialParameter method)

 	(mushroom.utils.parameters.LinearParameter method)

 	(mushroom.utils.parameters.Parameter method)

 	(mushroom.utils.variance_parameters.VarianceDecreasingParameter method)

 	(mushroom.utils.variance_parameters.VarianceIncreasingParameter method)

 	(mushroom.utils.variance_parameters.VarianceParameter method)

 	(mushroom.utils.variance_parameters.WindowedVarianceIncreasingParameter method)

 	(mushroom.utils.variance_parameters.WindowedVarianceParameter method)

 	get_values() (mushroom.utils.callbacks.CollectMaxQ method)

 	(mushroom.utils.callbacks.CollectParameters method)

 	(mushroom.utils.callbacks.CollectQ method)

 	get_weights() (mushroom.approximators.regressor.Regressor method)

 	(mushroom.policy.gaussian_policy.DiagonalGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.GaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateLogStdGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateStdGaussianPolicy method)

 	(mushroom.policy.policy.ParametricPolicy method)

 	GPOMDP (class in mushroom.algorithms.policy_search.policy_gradient)

 	GridWorld (class in mushroom.environments.grid_world)

 	GridWorldVanHasselt (class in mushroom.environments.grid_world)

 	Gym (class in mushroom.environments.gym_env)

H

 	
 	high (mushroom.utils.spaces.Box attribute)

I

 	
 	ImageViewer (class in mushroom.utils.viewer)

 	info (mushroom.environments.atari.Atari attribute)

 	(mushroom.environments.car_on_hill.CarOnHill attribute)

 	(mushroom.environments.finite_mdp.FiniteMDP attribute)

 	(mushroom.environments.grid_world.AbstractGridWorld attribute)

 	(mushroom.environments.grid_world.GridWorld attribute)

 	(mushroom.environments.grid_world.GridWorldVanHasselt attribute)

 	(mushroom.environments.gym_env.Gym attribute)

 	(mushroom.environments.inverted_pendulum.InvertedPendulum attribute)

 	(mushroom.environments.inverted_pendulum.InvertedPendulumDiscrete attribute)

 	(mushroom.environments.lqr.LQR attribute)

 	(mushroom.environments.segway.Segway attribute)

 	(mushroom.environments.ship_steering.ShipSteering attribute)

 	
 	initialized (mushroom.utils.replay_memory.ReplayMemory attribute)

 	input_shape (mushroom.approximators.regressor.Regressor attribute)

 	InvertedPendulum (class in mushroom.environments.inverted_pendulum)

 	InvertedPendulumDiscrete (class in mushroom.environments.inverted_pendulum)

L

 	
 	LazyFrames (class in mushroom.environments.atari)

 	learn() (mushroom.core.core.Core method)

 	line() (mushroom.utils.viewer.Viewer method)

 	LinearApproximator (class in mushroom.approximators.parametric.linear)

 	LinearParameter (class in mushroom.utils.parameters)

 	log_pdf() (mushroom.distributions.distribution.Distribution method)

 	(mushroom.distributions.gaussian.GaussianCholeskyDistribution method)

 	(mushroom.distributions.gaussian.GaussianDiagonalDistribution method)

 	(mushroom.distributions.gaussian.GaussianDistribution method)

 	
 	low (mushroom.utils.spaces.Box attribute)

 	LQR (class in mushroom.environments.lqr)

 	LSPI (class in mushroom.algorithms.value.batch_td)

M

 	
 	MaxAndSkip (class in mushroom.environments.atari)

 	MDPInfo (class in mushroom.environments.environment)

 	Mellowmax (class in mushroom.policy.td_policy)

 	minibatch_generator() (in module mushroom.utils.minibatches)

 	minibatch_number() (in module mushroom.utils.minibatches)

 	mk_dir_recursive() (in module mushroom.utils.folder)

 	mle() (mushroom.distributions.distribution.Distribution method)

 	(mushroom.distributions.gaussian.GaussianCholeskyDistribution method)

 	(mushroom.distributions.gaussian.GaussianDiagonalDistribution method)

 	(mushroom.distributions.gaussian.GaussianDistribution method)

 	model (mushroom.approximators.regressor.Regressor attribute)

 	(mushroom.utils.table.EnsembleTable attribute)

 	mushroom.algorithms.actor_critic.ddpg (module)

 	mushroom.algorithms.actor_critic.dpg (module)

 	mushroom.algorithms.actor_critic.stochastic_actor_critic (module)

 	mushroom.algorithms.agent (module)

 	mushroom.algorithms.policy_search.black_box_optimization (module)

 	mushroom.algorithms.policy_search.policy_gradient (module)

 	mushroom.algorithms.value.batch_td (module)

 	mushroom.algorithms.value.dqn (module)

 	mushroom.algorithms.value.td (module)

 	mushroom.approximators.parametric.linear (module)

 	mushroom.approximators.parametric.pytorch_network (module)

 	mushroom.approximators.regressor (module)

 	mushroom.core.core (module)

 	mushroom.distributions.distribution (module)

 	mushroom.distributions.gaussian (module)

 	mushroom.environments.atari (module)

 	mushroom.environments.car_on_hill (module)

 	mushroom.environments.environment (module)

 	mushroom.environments.finite_mdp (module)

 	mushroom.environments.generators.grid_world (module)

 	mushroom.environments.generators.simple_chain (module)

 	
 	mushroom.environments.generators.taxi (module)

 	mushroom.environments.grid_world (module)

 	mushroom.environments.gym_env (module)

 	mushroom.environments.inverted_pendulum (module)

 	mushroom.environments.lqr (module)

 	mushroom.environments.segway (module)

 	mushroom.environments.ship_steering (module)

 	mushroom.features._implementations.features_implementation (module)

 	mushroom.features.basis.fourier (module)

 	mushroom.features.basis.gaussian_rbf (module)

 	mushroom.features.basis.polynomial (module)

 	mushroom.features.features (module)

 	mushroom.features.tensors.gaussian_tensor (module)

 	mushroom.features.tiles.tiles (module)

 	mushroom.policy.gaussian_policy (module)

 	mushroom.policy.policy (module)

 	mushroom.policy.td_policy (module)

 	mushroom.solvers.dynamic_programming (module)

 	mushroom.utils.angles (module)

 	mushroom.utils.callbacks (module)

 	mushroom.utils.dataset (module)

 	mushroom.utils.eligibility_trace (module)

 	mushroom.utils.features (module)

 	mushroom.utils.folder (module)

 	mushroom.utils.minibatches (module)

 	mushroom.utils.numerical_gradient (module)

 	mushroom.utils.parameters (module)

 	mushroom.utils.preprocessor (module)

 	mushroom.utils.replay_memory (module)

 	mushroom.utils.spaces (module)

 	mushroom.utils.table (module)

 	mushroom.utils.variance_parameters (module)

 	mushroom.utils.viewer (module)

N

 	
 	n_actions (mushroom.utils.eligibility_trace.AccumulatingTrace attribute)

 	(mushroom.utils.eligibility_trace.ReplacingTrace attribute)

 	(mushroom.utils.table.Table attribute)

 	
 	normalize_angle() (in module mushroom.utils.angles)

 	normalize_angle_positive() (in module mushroom.utils.angles)

 	numerical_diff_dist() (in module mushroom.utils.numerical_gradient)

 	numerical_diff_policy() (in module mushroom.utils.numerical_gradient)

O

 	
 	output_shape (mushroom.approximators.regressor.Regressor attribute)

P

 	
 	Parameter (class in mushroom.utils.parameters)

 	parameters_size (mushroom.distributions.distribution.Distribution attribute)

 	(mushroom.distributions.gaussian.GaussianCholeskyDistribution attribute)

 	(mushroom.distributions.gaussian.GaussianDiagonalDistribution attribute)

 	(mushroom.distributions.gaussian.GaussianDistribution attribute)

 	ParametricPolicy (class in mushroom.policy.policy)

 	parse_dataset() (in module mushroom.utils.dataset)

 	parse_grid() (in module mushroom.environments.generators.grid_world)

 	(in module mushroom.environments.generators.taxi)

 	PGPE (class in mushroom.algorithms.policy_search.black_box_optimization)

 	Policy (class in mushroom.policy.policy)

 	policy_iteration() (in module mushroom.solvers.dynamic_programming)

 	
 	PolicyGradient (class in mushroom.algorithms.policy_search.policy_gradient)

 	polygon() (mushroom.utils.viewer.Viewer method)

 	PolynomialBasis (class in mushroom.features.basis.polynomial)

 	predict() (mushroom.approximators.parametric.linear.LinearApproximator method)

 	(mushroom.approximators.regressor.Regressor method)

 	(mushroom.utils.eligibility_trace.AccumulatingTrace method)

 	(mushroom.utils.eligibility_trace.ReplacingTrace method)

 	(mushroom.utils.table.EnsembleTable method)

 	(mushroom.utils.table.Table method)

 	Preprocessor (class in mushroom.utils.preprocessor)

 	PyTorchApproximator (class in mushroom.approximators.parametric.pytorch_network)

 	PyTorchGaussianRBF (class in mushroom.features.tensors.gaussian_tensor)

Q

 	
 	QLearning (class in mushroom.algorithms.value.td)

R

 	
 	Regressor (class in mushroom.approximators.regressor)

 	REINFORCE (class in mushroom.algorithms.policy_search.policy_gradient)

 	render() (mushroom.environments.atari.MaxAndSkip method)

 	ReplacingTrace (class in mushroom.utils.eligibility_trace)

 	ReplayMemory (class in mushroom.utils.replay_memory)

 	REPS (class in mushroom.algorithms.policy_search.black_box_optimization)

 	reset() (mushroom.approximators.regressor.Regressor method)

 	(mushroom.core.core.Core method)

 	(mushroom.environments.atari.Atari method)

 	(mushroom.environments.atari.MaxAndSkip method)

 	(mushroom.environments.car_on_hill.CarOnHill method)

 	(mushroom.environments.finite_mdp.FiniteMDP method)

 	(mushroom.environments.grid_world.AbstractGridWorld method)

 	(mushroom.environments.grid_world.GridWorld method)

 	(mushroom.environments.grid_world.GridWorldVanHasselt method)

 	(mushroom.environments.gym_env.Gym method)

 	(mushroom.environments.inverted_pendulum.InvertedPendulum method)

 	(mushroom.environments.inverted_pendulum.InvertedPendulumDiscrete method)

 	(mushroom.environments.lqr.LQR method)

 	(mushroom.environments.segway.Segway method)

 	(mushroom.environments.ship_steering.ShipSteering method)

 	(mushroom.policy.gaussian_policy.DiagonalGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.GaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateLogStdGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateStdGaussianPolicy method)

 	(mushroom.policy.policy.ParametricPolicy method)

 	(mushroom.policy.policy.Policy method)

 	(mushroom.policy.td_policy.Boltzmann method)

 	(mushroom.policy.td_policy.EpsGreedy method)

 	(mushroom.policy.td_policy.Mellowmax method)

 	(mushroom.policy.td_policy.TDPolicy method)

 	(mushroom.utils.eligibility_trace.AccumulatingTrace method)

 	(mushroom.utils.eligibility_trace.ReplacingTrace method)

 	(mushroom.utils.replay_memory.ReplayMemory method)

 	(mushroom.utils.table.EnsembleTable method)

 	
 	RLearning (class in mushroom.algorithms.value.td)

 	RQLearning (class in mushroom.algorithms.value.td)

 	RWR (class in mushroom.algorithms.policy_search.black_box_optimization)

S

 	
 	SAC (class in mushroom.algorithms.actor_critic.stochastic_actor_critic)

 	SAC_AVG (class in mushroom.algorithms.actor_critic.stochastic_actor_critic)

 	sample() (mushroom.distributions.distribution.Distribution method)

 	(mushroom.distributions.gaussian.GaussianCholeskyDistribution method)

 	(mushroom.distributions.gaussian.GaussianDiagonalDistribution method)

 	(mushroom.distributions.gaussian.GaussianDistribution method)

 	SARSA (class in mushroom.algorithms.value.td)

 	SARSALambdaContinuous (class in mushroom.algorithms.value.td)

 	SARSALambdaDiscrete (class in mushroom.algorithms.value.td)

 	Scaler (class in mushroom.utils.preprocessor)

 	screen (mushroom.utils.viewer.Viewer attribute)

 	seed() (mushroom.environments.atari.Atari method)

 	(mushroom.environments.atari.MaxAndSkip method)

 	(mushroom.environments.car_on_hill.CarOnHill method)

 	(mushroom.environments.finite_mdp.FiniteMDP method)

 	(mushroom.environments.grid_world.AbstractGridWorld method)

 	(mushroom.environments.grid_world.GridWorld method)

 	(mushroom.environments.grid_world.GridWorldVanHasselt method)

 	(mushroom.environments.gym_env.Gym method)

 	(mushroom.environments.inverted_pendulum.InvertedPendulum method)

 	(mushroom.environments.inverted_pendulum.InvertedPendulumDiscrete method)

 	(mushroom.environments.lqr.LQR method)

 	(mushroom.environments.segway.Segway method)

 	(mushroom.environments.ship_steering.ShipSteering method)

 	Segway (class in mushroom.environments.segway)

 	select_episodes() (in module mushroom.utils.dataset)

 	select_samples() (in module mushroom.utils.dataset)

 	set_episode_end() (mushroom.environments.atari.Atari method)

 	set_epsilon() (mushroom.policy.td_policy.EpsGreedy method)

 	set_parameters() (mushroom.distributions.distribution.Distribution method)

 	(mushroom.distributions.gaussian.GaussianCholeskyDistribution method)

 	(mushroom.distributions.gaussian.GaussianDiagonalDistribution method)

 	(mushroom.distributions.gaussian.GaussianDistribution method)

 	set_q() (mushroom.policy.td_policy.Boltzmann method)

 	(mushroom.policy.td_policy.EpsGreedy method)

 	(mushroom.policy.td_policy.Mellowmax method)

 	(mushroom.policy.td_policy.TDPolicy method)

 	set_sigma() (mushroom.policy.gaussian_policy.GaussianPolicy method)

 	set_std() (mushroom.policy.gaussian_policy.DiagonalGaussianPolicy method)

 	set_weights() (mushroom.approximators.regressor.Regressor method)

 	(mushroom.policy.gaussian_policy.DiagonalGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.GaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateLogStdGaussianPolicy method)

 	(mushroom.policy.gaussian_policy.StateStdGaussianPolicy method)

 	(mushroom.policy.policy.ParametricPolicy method)

 	shape (mushroom.environments.environment.MDPInfo attribute)

 	(mushroom.utils.eligibility_trace.AccumulatingTrace attribute)

 	(mushroom.utils.eligibility_trace.ReplacingTrace attribute)

 	(mushroom.utils.parameters.ExponentialParameter attribute)

 	(mushroom.utils.parameters.LinearParameter attribute)

 	(mushroom.utils.parameters.Parameter attribute)

 	(mushroom.utils.spaces.Box attribute)

 	(mushroom.utils.spaces.Discrete attribute)

 	(mushroom.utils.table.Table attribute)

 	(mushroom.utils.variance_parameters.VarianceDecreasingParameter attribute)

 	(mushroom.utils.variance_parameters.VarianceIncreasingParameter attribute)

 	(mushroom.utils.variance_parameters.VarianceParameter attribute)

 	(mushroom.utils.variance_parameters.WindowedVarianceIncreasingParameter attribute)

 	(mushroom.utils.variance_parameters.WindowedVarianceParameter attribute)

 	ShipSteering (class in mushroom.environments.ship_steering)

 	size (mushroom.environments.environment.MDPInfo attribute)

 	(mushroom.utils.replay_memory.ReplayMemory attribute)

 	(mushroom.utils.spaces.Discrete attribute)

 	(mushroom.utils.viewer.Viewer attribute)

 	
 	SpeedyQLearning (class in mushroom.algorithms.value.td)

 	square() (mushroom.utils.viewer.Viewer method)

 	StateLogStdGaussianPolicy (class in mushroom.policy.gaussian_policy)

 	StateStdGaussianPolicy (class in mushroom.policy.gaussian_policy)

 	step() (mushroom.environments.atari.Atari method)

 	(mushroom.environments.atari.MaxAndSkip method)

 	(mushroom.environments.car_on_hill.CarOnHill method)

 	(mushroom.environments.finite_mdp.FiniteMDP method)

 	(mushroom.environments.grid_world.AbstractGridWorld method)

 	(mushroom.environments.grid_world.GridWorld method)

 	(mushroom.environments.grid_world.GridWorldVanHasselt method)

 	(mushroom.environments.gym_env.Gym method)

 	(mushroom.environments.inverted_pendulum.InvertedPendulum method)

 	(mushroom.environments.inverted_pendulum.InvertedPendulumDiscrete method)

 	(mushroom.environments.lqr.LQR method)

 	(mushroom.environments.segway.Segway method)

 	(mushroom.environments.ship_steering.ShipSteering method)

 	stop() (mushroom.algorithms.actor_critic.ddpg.DDPG method)

 	(mushroom.algorithms.actor_critic.ddpg.TD3 method)

 	(mushroom.algorithms.actor_critic.dpg.COPDAC_Q method)

 	(mushroom.algorithms.actor_critic.stochastic_actor_critic.SAC method)

 	(mushroom.algorithms.actor_critic.stochastic_actor_critic.SAC_AVG method)

 	(mushroom.algorithms.agent.Agent method)

 	(mushroom.algorithms.policy_search.black_box_optimization.BlackBoxOptimization method)

 	(mushroom.algorithms.policy_search.black_box_optimization.PGPE method)

 	(mushroom.algorithms.policy_search.black_box_optimization.REPS method)

 	(mushroom.algorithms.policy_search.black_box_optimization.RWR method)

 	(mushroom.algorithms.policy_search.policy_gradient.GPOMDP method)

 	(mushroom.algorithms.policy_search.policy_gradient.PolicyGradient method)

 	(mushroom.algorithms.policy_search.policy_gradient.REINFORCE method)

 	(mushroom.algorithms.policy_search.policy_gradient.eNAC method)

 	(mushroom.algorithms.value.batch_td.BatchTD method)

 	(mushroom.algorithms.value.batch_td.DoubleFQI method)

 	(mushroom.algorithms.value.batch_td.FQI method)

 	(mushroom.algorithms.value.batch_td.LSPI method)

 	(mushroom.algorithms.value.dqn.AveragedDQN method)

 	(mushroom.algorithms.value.dqn.CategoricalDQN method)

 	(mushroom.algorithms.value.dqn.DQN method)

 	(mushroom.algorithms.value.dqn.DoubleDQN method)

 	(mushroom.algorithms.value.td.DoubleQLearning method)

 	(mushroom.algorithms.value.td.ExpectedSARSA method)

 	(mushroom.algorithms.value.td.QLearning method)

 	(mushroom.algorithms.value.td.RLearning method)

 	(mushroom.algorithms.value.td.RQLearning method)

 	(mushroom.algorithms.value.td.SARSA method)

 	(mushroom.algorithms.value.td.SARSALambdaContinuous method)

 	(mushroom.algorithms.value.td.SARSALambdaDiscrete method)

 	(mushroom.algorithms.value.td.SpeedyQLearning method)

 	(mushroom.algorithms.value.td.TD method)

 	(mushroom.algorithms.value.td.TrueOnlineSARSALambda method)

 	(mushroom.algorithms.value.td.WeightedQLearning method)

 	(mushroom.environments.atari.Atari method)

 	(mushroom.environments.car_on_hill.CarOnHill method)

 	(mushroom.environments.finite_mdp.FiniteMDP method)

 	(mushroom.environments.grid_world.AbstractGridWorld method)

 	(mushroom.environments.grid_world.GridWorld method)

 	(mushroom.environments.grid_world.GridWorldVanHasselt method)

 	(mushroom.environments.gym_env.Gym method)

 	(mushroom.environments.inverted_pendulum.InvertedPendulum method)

 	(mushroom.environments.inverted_pendulum.InvertedPendulumDiscrete method)

 	(mushroom.environments.lqr.LQR method)

 	(mushroom.environments.segway.Segway method)

 	(mushroom.environments.ship_steering.ShipSteering method)

T

 	
 	Table (class in mushroom.utils.table)

 	TD (class in mushroom.algorithms.value.td)

 	TD3 (class in mushroom.algorithms.actor_critic.ddpg)

 	
 	TDPolicy (class in mushroom.policy.td_policy)

 	Tiles (class in mushroom.features.tiles.tiles)

 	torque_arrow() (mushroom.utils.viewer.Viewer method)

 	TrueOnlineSARSALambda (class in mushroom.algorithms.value.td)

U

 	
 	uniform_grid() (in module mushroom.utils.features)

 	unwrapped (mushroom.environments.atari.MaxAndSkip attribute)

 	update() (mushroom.policy.td_policy.EpsGreedy method)

 	(mushroom.utils.eligibility_trace.AccumulatingTrace method)

 	(mushroom.utils.eligibility_trace.ReplacingTrace method)

 	(mushroom.utils.parameters.ExponentialParameter method)

 	(mushroom.utils.parameters.LinearParameter method)

 	(mushroom.utils.parameters.Parameter method)

 	(mushroom.utils.variance_parameters.VarianceDecreasingParameter method)

 	(mushroom.utils.variance_parameters.VarianceIncreasingParameter method)

 	(mushroom.utils.variance_parameters.VarianceParameter method)

 	(mushroom.utils.variance_parameters.WindowedVarianceIncreasingParameter method)

 	(mushroom.utils.variance_parameters.WindowedVarianceParameter method)

V

 	
 	value_iteration() (in module mushroom.solvers.dynamic_programming)

 	VarianceDecreasingParameter (class in mushroom.utils.variance_parameters)

 	
 	VarianceIncreasingParameter (class in mushroom.utils.variance_parameters)

 	VarianceParameter (class in mushroom.utils.variance_parameters)

 	Viewer (class in mushroom.utils.viewer)

W

 	
 	WeightedQLearning (class in mushroom.algorithms.value.td)

 	weights_size (mushroom.approximators.regressor.Regressor attribute)

 	(mushroom.policy.gaussian_policy.DiagonalGaussianPolicy attribute)

 	(mushroom.policy.gaussian_policy.GaussianPolicy attribute)

 	(mushroom.policy.gaussian_policy.StateLogStdGaussianPolicy attribute)

 	(mushroom.policy.gaussian_policy.StateStdGaussianPolicy attribute)

 	(mushroom.policy.policy.ParametricPolicy attribute)

 	
 	WindowedVarianceIncreasingParameter (class in mushroom.utils.variance_parameters)

 	WindowedVarianceParameter (class in mushroom.utils.variance_parameters)

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Mushroom

 		
 Mushroom

 		
 Core

 		
 Environments

 		
 Environments

 		
 Generators

 		
 Algorithms

 		
 Agent

 		
 Subpackages

 		
 Approximators

 		
 Regressor

 		
 Approximator

 		
 Features

 		
 Components

 		
 Policy

 		
 Gaussian policy

 		
 TD policy

 		
 Distributions

 		
 Gaussian

 		
 Solvers

 		
 Dynamic programming

 		
 Utils

 		
 Angles

 		
 Callbacks

 		
 Dataset

 		
 Eligibility trace

 		
 Features

 		
 Folder

 		
 Minibatches

 		
 Numerical gradient

 		
 Parameters

 		
 Preprocessor

 		
 Replay memory

 		
 Spaces

 		
 Table

 		
 Variance parameters

 		
 Viewer

 		
 Tutorials

 		
 How to make a simple experiment

 		
 How to make an advanced experiment

 		
 How to create a regressor

 		
 Usage of the Regressor interface

 		
 Example

 		
 Generic regressor

_static/ajax-loader.gif

