Mushroom Documentation
Release 1.2.0

Carlo D’Eramo, Davide Tateo

Dec 21, 2019

API:

1 Reinforcement Learning python library
2 Basic run example

3 Download and installation

3.1 Agent-Environment Interface,
32 Actor-Critic
33 Policysearch e
34 Value-Based
3.5 ApPProximatorso i e e e e
3.6 Distributions L e
377 Environmentso e
3.8 Features.
3.9 Policy e e e
310 Solvers
301 Utils ..o oo e
3.12 How to make a simple experiment
3.13 How to make an advanced experiment
3.14 How to Ccreate a regresSOr . . v v v v v v v v e e e e e e e e e
3.15 How to make a deep RL experiment

Python Module Index

Index

\© L

CHAPTER 1

Reinforcement Learning python library

Mushroom is a Reinforcement Learning (RL) library that aims to be a simple, yet powerful way to make RL and deep
RL experiments. The idea behind Mushroom consists in offering the majority of RL algorithms providing a common
interface in order to run them without excessive effort. Moreover, it is designed in such a way that new algorithms and
other stuff can generally be added transparently without the need of editing other parts of the code. Mushroom makes
a large use of the environments provided by OpenAl Gym, DeepMind Control Suite and MuJoCo libraries, and the
PyTorch library for tensor computation.

With Mushroom you can:
* solve RL problems simply writing a single small script;
* add custom algorithms and other stuff transparently;
« use all RL environments offered by well-known libraries and build customized environments as well;
* exploit regression models offered by Scikit-Learn or build a customized one with PyTorch;

* run experiments on GPU.

https://gym.openai.com/
https://github.com/deepmind/dm_control
http://www.mujoco.org/
https://pytorch.org

Mushroom Documentation, Release 1.2.0

2 Chapter 1. Reinforcement Learning python library

CHAPTER 2

Basic run example

Solve a discrete MDP in few a lines. Firstly, create a MDP:

from mushroom.environments import GridWorld

mdp = GridWorld(width=3, height=3, goal=(2, 2), start=(0, 0))

Then, an epsilon-greedy policy with:

from mushroom.policy import EpsGreedy
from mushroom.utils.parameters import Parameter

epsilon = Parameter (value=1.)
policy = EpsGreedy (epsilon=epsilon)

Eventually, the agent is:

from mushroom.algorithms.value import QLearning

learning_rate = Parameter (value=.6)
agent = QLearning(policy, mdp.info, learning_rate)

Learn:

from mushroom.core.core import Core

core = Core(agent, mdp)
core.learn(n_steps=10000, n_steps_per_fit=1)

Print final Q-table:

import numpy as np

shape = agent.approximator.shape
g = np.zeros (shape)

(continues on next page)

Mushroom Documentation, Release 1.2.0

(continued from previous page)

for i in range (shapel[0]):
for j in range(shape[l]):

state = np.array([i])
action = np.array([j])
gli, j] = agent.approximator.predict (state, action)

print (q)

Results in:

[[6.561 7.29 6.561 7.29]
[7.29 8.1 6.561 8.1]
[8.1 9. 7.29 8.1]
[6.561 8.1 7.29 8.1]
[7.29 9. 7.29 9.]
[8.1 10. 8.1 9.]
[7.29 8.1 8.1 9.]
[8.1 9. 8.1 10.]
[0. 0. 0. 0. 11

where the Q-values of each action of the MDP are stored for each rows representing a state of the MDP.

4 Chapter 2. Basic run example

CHAPTER 3

Download and installation

Mushroom can be downloaded from the GitHub repository. Installation can be done running

’pip3 install -e .

and

’pipB install -r requirements.txt

to install all its dependencies.

To compile the documentation:

cd mushroom/docs
make html

or to compile the pdf version:

cd mushroom/docs
make latexpdf

To launch mushroom test suite:

’pytest

3.1 Agent-Environment Interface

The three basic interface of mushroom are the Agent, the Environment and the Core interface.
* The Agent is the basic interface for any Reinforcement Learning algorithm.
* The Environment is the basic interface for every problem/task that the agent should solve.

* The Core is a class used to control the interaction between an agent and an environment.

https://github.com/carloderamo/mushroom

Mushroom Documentation, Release 1.2.0

3.1.1 Agent

Mushroom provides the implementations of several algorithms belonging to all categories of RL:
¢ value-based;
* policy-search;
* actor-critic.

One can easily implement customized algorithms following the structure of the already available ones, by extending
the following interface:

class mushroom.algorithms.agent .Agent (policy, mdp_info, features=None)
Bases: object

This class implements the functions to manage the agent (e.g. move the agent following its policy).

__init__ (policy, mdp_info, features=None)
Constructor.

Parameters
* policy (Policy) — the policy followed by the agent;
e mdp_info (MDPInfo)— information about the MDP;
e features (object, None) - features to extract from the state.

fit (dataset)
Fit step.

Parameters dataset (1ist) - the dataset.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

3.1.2 Environment

Mushroom provides several implementation of well known benchmarks with both continuous and discrete action
spaces.

To implement a new environment, it is mandatory to use the following interface:

class mushroom.environments.environment .MDPInfo (observation_space, action_space,
gamma, horizon)
Bases: object

This class is used to store the information of the environment.

init__ (observation_space, action_space, gamma, horizon)
Constructor.

6 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Parameters
* observation_space ([Box, Discrete])— the state space;
* action_space ([Box, Discrete]) - the action space;
e gamma (f1oat) — the discount factor;
* horizon (int) — the horizon.

size
The sum of the number of discrete states and discrete actions. Only works for discrete spaces.

Type Returns

shape
The concatenation of the shape tuple of the state and action spaces.

Type Returns

class mushroom.environments.environment .Environment (mdp_info)
Bases: object

Basic interface used by any mushroom environment.

__init__ (mdp_info)
Constructor.

Parameters mdp_info (MDPInfo)— an object containing the info of the environment.

seed (seed)
Set the seed of the environment.

Parameters seed (float) — the value of the seed.

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None) - the state to set to the current state.
Returns The current state.

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) — the action to execute.

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

stop ()

Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when

using openai-gym rendering

info
An object containing the info of the environment.

Type Returns

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters

¢ x — the variable to bound;

3.1. Agent-Environment Interface

Mushroom Documentation, Release 1.2.0

e min_value — the minimum value;
e max_value — the maximum value;

Returns The bounded variable.

3.1.3 Core

class mushroom.core.core.Core (agent, mdp, callbacks=None)
Bases: object

Implements the functions to run a generic algorithm.

__init__ (agent, mdp, callbacks=None)
Constructor.

Parameters
* agent (Agent) — the agent moving according to a policy;
* mdp (Environment) — the environment in which the agent moves;
e callbacks (11ist) - list of callbacks to execute at the end of each learn iteration.

learn (n_steps=None, n_episodes=None, n_steps_per_fit=None, n_episodes_per_fit=None, ren-

der=False, quiet=False)
This function moves the agent in the environment and fits the policy using the collected samples. The

agent can be moved for a given number of steps or a given number of episodes and, independently from
this choice, the policy can be fitted after a given number of steps or a given number of episodes. By default,
the environment is reset.

Parameters
* n_steps (int, None)-number of steps to move the agent;
* n_episodes (int, None)-number of episodes to move the agent;
* n_steps_per_£fit (int, None)-number of steps between each fit of the policy;

* n_episodes_per_ fit (int, None)- number of episodes between each fit of the
policy;
e render (bool, False)— whether to render the environment or not;

* quiet (bool, False)— whether to show the progress bar or not.

evaluate (initial_states=None, n_steps=None, n_episodes=None, render=False, quiet=False)
This function moves the agent in the environment using its policy. The agent is moved for a provided
number of steps, episodes, or from a set of initial states for the whole episode. By default, the environment
is reset.

Parameters
* initial_states (np.ndarray, None) - the starting states of each episode;
* n_steps (int, None)-number of steps to move the agent;
* n_episodes (int, None)-number of episodes to move the agent;
* render (bool, False)— whether to render the environment or not;
* quiet (bool, False)— whether to show the progress bar or not.

_step (render)
Single step.

8 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Parameters render (bool)— whether to render or not.

Returns A tuple containing the previous state, the action sampled by the agent, the reward ob-
tained, the reached state, the absorbing flag of the reached state and the last step flag.

reset (initial_states=None)
Reset the state of the agent.

3.2 Actor-Critic

3.2.1 Classical Actor-Critic Methods

class mushroom.algorithms.actor_critic.classic_actor_critic.COPDAC_Q (policy,
mu,
mdp_info,
al-
pha_theta,
al-
pha_omega,
al-
pha_v,
value_function_features=None,
pol-

icy_features=None)
Bases: mushroom.algorithms.agent.Agent

Compatible off-policy deterministic actor-critic algorithm. “Deterministic Policy Gradient Algorithms”. Silver
D. etal.. 2014.

__init__ (policy, mu, mdp_info, alpha_theta, alpha_omega, alpha_v, value_function_features=None,
policy_features=None)
Constructor.

Parameters

e policy (Policy) — any exploration policy, possibly using the deterministic policy as
mean regressor;

* mu (Regressor) —regressor that describe the deterministic policy to be learned i.e., the
deterministic mapping between state and action.

* alpha_theta (Parameter) — learning rate for policy update;
* alpha_omega (Parameter) — learning rate for the advantage function;
* alpha_v (Parameter) — learning rate for the value function;

* value_function_features (Features, None) — features used by the value
function approximator;

* policy_features (Features, None) - features used by the policy.
£it (dataset)
Fit step.
Parameters dataset (1ist) - the dataset.

draw_action (state)

Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

3.2. Actor-Critic 9

Mushroom Documentation, Release 1.2.0

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.actor_critic.classic_actor_critic.StochasticAC (policy,

mdp_info,
al-
pha_theta,
al-
pha_v,
lambda_par=0.9,
value_function_features=.
pol-
icy_features=None)

Bases: mushroom.algorithms.agent.Agent

Stochastic Actor critic in the episodic setting as presented in: “Model-Free Reinforcement Learning with Con-

tinuous Action in Practice”. Degris T. et al.. 2012.

__init__ (policy, mdp_info, alpha_theta, alpha_v, lambda_par=0.9, value_function_features=None,
policy_features=None)
Constructor.

Parameters
* policy (ParametricPolicy) — a differentiable stochastic policy;
¢ mdp_info - information about the MDP;
* alpha_theta (Parameter) — learning rate for policy update;
* alpha_v (Parameter) — learning rate for the value function;
* lambda par (float, 9)- trace decay parameter;

* value_function_features (Features, None) — features used by the value
function approximator;

e policy_features (Features, None)— features used by the policy.

episode_start ()
Called by the agent when a new episode starts.

£it (dataset)
Fit step.

Parameters dataset (11ist) — the dataset.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.

Returns The action to be executed.

10 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.actor_critic.classic_actor_critic.StochasticAC_AVG (policy,
mdp_info,
al-
pha_theta,
al-
pha_v,
al-
pha_r,
lambda_par=0.9,
value_function_feat
pol-
icy_features=None)

Bases: mushroom.algorithms.agent.Agent

Stochastic Actor critic in the average reward setting as presented in: “Model-Free Reinforcement Learning with
Continuous Action in Practice”. Degris T. et al.. 2012.

__init__ (policy, mdp_info, alpha_theta, alpha_v, alpha_r, lambda_par=0.9,

value_function_features=None, policy_features=None)
Constructor.

Parameters
e policy (ParametricPolicy) — a differentiable stochastic policy;
* mdp_info - information about the MDP;
* alpha_theta (Parameter) — learning rate for policy update;
* alpha_v (Parameter) — learning rate for the value function;
* alpha_r (Parameter) — learning rate for the reward trace;
e lambda_par (float, 9)- trace decay parameter;

* value_function_features (Features, None) — features used by the value
function approximator;

* policy_features (Features, None) - features used by the policy.

episode_start ()
Called by the agent when a new episode starts.

£it (dataset)
Fit step.

Parameters dataset (1ist)— the dataset.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

3.2. Actor-Critic 11

Mushroom Documentation, Release 1.2.0

3.2.2 Deep Actor-Critic Methods

class mushroom.algorithms.actor_critic.deep_actor_critic.DeepAC (policy,
mdp_info, ac-
tor_optimizer,

parameters)
Bases: mushroom.algorithms.agent.Agent

Base class for algorithms that uses the reparametrization trick, such as SAC, DDPG and TD3.

__init__ (policy, mdp_info, actor_optimizer, parameters)
Constructor.

Parameters
* actor_optimizer (dict)— parameters to specify the actor optimizer algorithm;
* parameters — policy parameters to be optimized.

£it (dataset)
Fit step.

Parameters dataset (11ist) — the dataset.

_optimize_actor_parameters (loss)
Method used to update actor parameters to maximize a given loss.

Parameters loss (torch. tensor) — the loss computed by the algorithm.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.actor_critic.deep_actor_critic.A2C (mdp_info, policy,
critic_params, ac-
tor_optimizer,
ent_coeff,
max_grad_norm=None,

critic_fit_params=None)
Bases: mushroom.algorithms.actor_critic.deep_actor_critic.deep_actor_critic.

DeepAC

Advantage Actor Critic algorithm (A2C). Synchronous version of the A3C algorithm. “Asynchronous Methods
for Deep Reinforcement Learning”. Mnih V. et. al.. 2016.

__init__ (mdp_info, policy, critic_params, actor_optimizer, ent_coeff, max_grad_norm=None,

critic_fit_params=None)
Constructor.

Parameters

e policy (TorchPolicy) —torch policy to be learned by the algorithm

12 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

e critic_params (dict) — parameters of the critic approximator to build;
* actor_optimizer (dict)— parameters to specify the actor optimizer algorithm;
* ent_coeff (float, 0)- coefficient for the entropy penalty;

* max_grad_norm (float, None)— maximum norm for gradient clipping. If None,
no clipping will be performed, unless specified otherwise in actor_optimizer;

* critic_fit_params (dict, None) — parameters of the fitting algorithm of the
critic approximator.

£it (dataset)
Fit step.

Parameters dataset (1ist) - the dataset.

_optimize_actor_parameters (loss)
Method used to update actor parameters to maximize a given loss.

Parameters loss (torch. tensor) — the loss computed by the algorithm.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.actor_critic.deep_actor_critic.DDPG (mdp_info, pol-
icy_class, pol-
icy_params,
batch_size, ini-
tial_replay_size,
max_replay_size,
tau,
critic_params,
actor_params,
actor_optimizer,
policy_delay=1,
critic_fit_params=None)
Bases: mushroom.algorithms.actor_critic.deep_actor_critic.deep_actor_critic.
DeepAC

Deep Deterministic Policy Gradient algorithm. “Continuous Control with Deep Reinforcement Learning”. Lil-
licrap T. P. et al.. 2016.

__init__ (mdp_info, policy_class, policy_params, batch_size, initial_replay_size,
max_replay_size, tau, critic_params, actor_params, actor_optimizer, policy_delay=1,

critic_fit_params=None)
Constructor.

Parameters

e policy_class (Policy) —class of the policy;

3.2. Actor-Critic 13

Mushroom Documentation, Release 1.2.0

* policy_params (dict) — parameters of the policy to build;
* batch_size (int) — the number of samples in a batch;

* initial replay size (int) - the number of samples to collect before starting the
learning;

* max_replay_size (int)- the maximum number of samples in the replay memory;
* tau (float) - value of coefficient for soft updates;

* actor_params (dict) — parameters of the actor approximator to build;

* critic_params (dict) — parameters of the critic approximator to build;

* actor_optimizer (dict)— parameters to specify the actor optimizer algorithm;

e policy_delay (int, 1) - the number of updates of the critic after which an actor
update is implemented;

* critic_fit_params (dict, None) — parameters of the fitting algorithm of the
critic approximator;

f£it (dataset)
Fit step.

Parameters dataset (1ist) - the dataset.

_init_target ()
Init weights for target approximators

_update_target ()
Update the target networks.

next(q (next_state, absorbing)
Parameters
* next_state (np.ndarray) — the states where next action has to be evaluated;
* absorbing (np.ndarray) — the absorbing flag for the states in next_state.

Returns Action-values returned by the critic for next__state and the action returned by the
actor.

_optimize_actor_parameters (/oss)
Method used to update actor parameters to maximize a given loss.

Parameters loss (torch. tensor) — the loss computed by the algorithm.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

14 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

class mushroom.algorithms.actor_critic.deep_actor_critic.TD3 (mdp_info, pol-
icy_class, pol-
icy_params,
batch_size, ini-

tial_replay_size,
max_replay_size,
tau, critic_params,
actor_params,
actor_optimizer,
policy_delay=2,
noise_std=0.2,
noise_clip=0.5,

critic_fit_params=None)
Bases: mushroom.algorithms.actor_critic.deep_actor_critic.ddpg.DDPG

Twin Delayed DDPG algorithm. “Addressing Function Approximation Error in Actor-Critic Methods”. Fuji-
moto S. et al.. 2018.

__init__ (mdp_info, policy_class, policy_params, batch_size, initial_replay_size, max_replay_size,
tau, critic_params, actor_params, actor_optimizer, policy_delay=2, noise_std=0.2,
noise_clip=0.5, critic_fit_params=None)

Constructor.

Parameters
* policy_class (Policy) - class of the policy;
e policy_params (dict) — parameters of the policy to build;
* batch_size (int) — the number of samples in a batch;

* initial_ replay_ size (int) - the number of samples to collect before starting the
learning;

* max_replay_size (int)-the maximum number of samples in the replay memory;
* tau (float) - value of coefficient for soft updates;

* critic_params (dict) — parameters of the critic approximator to build;

* actor_params (dict) — parameters of the actor approximator to build;

* actor_optimizer (dict) — parameters to specify the actor optimizer algorithm;

e policy_delay (int, 2) - the number of updates of the critic after which an actor
update is implemented;

* noise_std (float, 2)-standard deviation of the noise used for policy smoothing;
* noise_clip (float, 5)- maximum absolute value for policy smoothing noise;

* critic_fit_params (dict, None) — parameters of the fitting algorithm of the
critic approximator.

_init_target ()
Initialize weights for target approximators.

_update_target ()
Update the target networks.

_next_q (next_state, absorbing)
Parameters

* next_state (np.ndarray) — the states where next action has to be evaluated;

3.2. Actor-Critic 15

Mushroom Documentation, Release 1.2.0

* absorbing (np.ndarray) — the absorbing flag for the states in next_state.

Returns Action-values returned by the critic for next_state and the action returned by the
actor.

_optimize_actor_parameters (/oss)
Method used to update actor parameters to maximize a given loss.

Parameters loss (torch. tensor) —the loss computed by the algorithm.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

£it (dataset)
Fit step.

Parameters dataset (11ist) — the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.actor_critic.deep_actor_critic.SAC (mdp_info,
batch_size, ini-
tial_replay_size,
max_replay_size,
warmup_transitions,
tau, lIr_alpha, ac-
tor_mu_params,
ac-
tor_sigma_params,
actor_optimizer,
critic_params, tar-
get_entropy=None,

critic_fit_params=None)
Bases: mushroom.algorithms.actor_critic.deep_actor_critic.deep_actor_critic.
DeepAC

Soft Actor-Critic algorithm. “Soft Actor-Critic Algorithms and Applications”. Haarnoja T. et al.. 2019.

__init__ (mdp_info, batch_size, initial_replay_size, max_replay_size, warmup_transitions, tau,
Ir_alpha, actor_mu_params, actor_sigma_params, actor_optimizer, critic_params, tar-

get_entropy=None, critic_fit_params=None)
Constructor.

Parameters
* batch_size (int) — the number of samples in a batch;

* initial_ replay_ size (int) - the number of samples to collect before starting the
learning;

* max_replay_size (int)-the maximum number of samples in the replay memory;

16 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

* warmup_transitions (int)— number of samples to accumulate in the replay mem-
ory to start the policy fitting;

* tau (float) - value of coefficient for soft updates;

* 1r alpha (float) - Learning rate for the entropy coefficient;

* actor_mu_params (dict) — parameters of the actor mean approximator to build;

* actor_sigma_params (dict) — parameters of the actor sigm approximator to build;
* actor_optimizer (dict) — parameters to specify the actor optimizer algorithm;

* critic_params (dict) — parameters of the critic approximator to build;

* target_entropy (float, None) — target entropy for the policy, if None a default
value is computed ;

* critic fit params (dict, None) — parameters of the fitting algorithm of the
critic approximator.

£it (dataset)
Fit step.

Parameters dataset (11ist) — the dataset.

_init_target ()
Init weights for target approximators.

_optimize_actor_parameters (loss)
Method used to update actor parameters to maximize a given loss.

Parameters loss (torch. tensor) — the loss computed by the algorithm.

_update_target ()
Update the target networks.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

next((next_state, absorbing)
Parameters
* next_state (np.ndarray) — the states where next action has to be evaluated;
* absorbing (np.ndarray) — the absorbing flag for the states in next_state.

Returns Action-values returned by the critic for next_state and the action returned by the
actor.

3.2. Actor-Critic 17

Mushroom Documentation, Release 1.2.0

class mushroom.algorithms.actor_critic.deep_actor_critic.TRPO (mdp_info, policy,
critic_params,
ent_coeff=0.0,
max_kl=0.001,
lam=1.0,
n_epochs_line_search=10,
n_epochs_cg=10,
cg_damping=0.01,
cg_residual_tol=1e-
10, quiet=True,

critic_fit_params=None)
Bases: mushroom.algorithms.agent.Agent

Trust Region Policy optimization algorithm. “Trust Region Policy Optimization”. Schulman J. et al.. 2015.

__init__ (mdp_info, policy, critic_params, ent_coeff=0.0, max_kl=0.001, lam=1.0,
n_epochs_line_search=10, n_epochs_cg=10, cg_damping=0.01, cg_residual_tol=1e-

10, quiet=True, critic_fit_params=None)
Constructor.

Parameters
e policy (TorchPolicy) —torch policy to be learned by the algorithm
* critic_params (dict) — parameters of the critic approximator to build;
* ent_coeff (float, 0)- coefficient for the entropy penalty;
* max_k1 (float, 001)- maximum kl allowed for every policy update;
* float (lam)— lambda coefficient used by generalized advantage estimation;

* n_epochs_line_search (int, 10)-— maximum number of iterations of the line
search algorithm;

* n_epochs_cg (int, 10)- maximum number of iterations of the conjugate gradient
algorithm;

* cg_damping (float, le-2)-damping factor for the conjugate gradient algorithm;
* cg_residual_tol (float, Ie-10)- conjugate gradient residual tolerance;
e quiet (bool, True)-if true, the algorithm will print debug information;

e critic_fit_params (dict, None) — parameters of the fitting algorithm of the
critic approximator.

£it (dataset)
Fit step.

Parameters dataset (1ist) - the dataset.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

18 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.actor_critic.deep_actor_critic.PPO (mdp_info, policy,
critic_params,
actor_optimizer,
n_epochs_policy,
batch_size,

eps_ppo, lam,
quiet=True,

critic_fit_params=None)
Bases: mushroom.algorithms.agent.Agent

Proximal Policy Optimization algorithm. “Proximal Policy Optimization Algorithms”. Schulman J. et al.. 2017.

__init__ (mdp_info, policy, critic_params, actor_optimizer, n_epochs_policy, batch_size, eps_ppo,
lam, quiet=True, critic_fit_params=None)
Constructor.

Parameters
e policy (TorchPolicy) —torch policy to be learned by the algorithm
* critic_params (dict) — parameters of the critic approximator to build;
* actor_optimizer (dict) — parameters to specify the actor optimizer algorithm;
* n_epochs_policy (int) - number of policy updates for every dataset;
* batch_size (int) - size of minibatches for every optimization step
* eps_ppo (float) - value for probability ratio clipping;
* float (lam) - lambda coefficient used by generalized advantage estimation;
* quiet (bool, True)-if true, the algorithm will print debug information;

* critic_fit_params (dict, None) — parameters of the fitting algorithm of the
critic approximator.

fit (dataset)
Fit step.

Parameters dataset (1ist)— the dataset.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

3.2. Actor-Critic 19

Mushroom Documentation, Release 1.2.0

3.3 Policy search

3.3.1 Policy gradient

class mushroom.algorithms.policy_search.policy_gradient .REINFORCE (policy,

mdp_info,
learn-
ing_rate,

fea-
tures=None)
Bases: mushroom.algorithms.policy_search.policy_gradient.policy_gradient.

PolicyGradient

REINFORCE algorithm. “Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement
Learning”, Williams R. J.. 1992.

__init__ (policy, mdp_info, learning_rate, features=None)
Constructor.

Parameters learning rate (float) - the learning rate.

_compute_gradient (J)
Return the gradient computed by the algorithm.

Parameters J(11st)-—listof the cumulative discounted rewards for each episode in the dataset.

_step_update (x, u, r)
This function is called, when parsing the dataset, at each episode step.

Parameters
* x (np.ndarray) — the state at the current step;
* u (np.ndarray) — the action at the current step;
* r (np.ndarray) — the reward at the current step.

_episode_end update ()
This function is called, when parsing the dataset, at the beginning of each episode. The implementation is
dependent on the algorithm (e.g. REINFORCE updates some data structures).

_init_update ()
This function is called, when parsing the dataset, at the beginning of each episode. The implementation is
dependent on the algorithm (e.g. REINFORCE resets some data structure).

_parse (sample)
Utility to parse the sample.

Parameters sample (11ist)— the current episode step.

Returns A tuple containing state, action, reward, next state, absorbing and last flag. If provided,
state is preprocessed with the features.

_update_parameters (J)
Update the parameters of the policy.

Parameters J(11st)-—listof the cumulative discounted rewards for each episode in the dataset.

draw_action (state)

Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.

20

Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Returns The action to be executed.
episode_start ()
Called by the agent when a new episode starts.
f£it (dataset)
Fit step.
Parameters dataset (1ist)— the dataset.

stop ()

Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.policy_search.policy_gradient .GPOMDP (policy,

mdp_info,
learning_rate,
features=None)
Bases: mushroom.algorithms.policy_search.policy_gradient.policy_gradient.
PolicyGradient

GPOMDP algorithm. “Infinite-Horizon Policy-Gradient Estimation”. Baxter J. and Bartlett P. L.. 2001.
__init__ (policy, mdp_info, learning_rate, features=None)
Constructor.
Parameters learning_rate (float) — the learning rate.

_compute_gradient (J)
Return the gradient computed by the algorithm.

Parameters J(1ist)- listof the cumulative discounted rewards for each episode in the dataset.
_step_update (x, u, r)
This function is called, when parsing the dataset, at each episode step.

Parameters

* x (np.ndarray) — the state at the current step;
* u(np.ndarray) - the action at the current step;
* r (np.ndarray) - the reward at the current step.
_episode_end_update ()

This function is called, when parsing the dataset, at the beginning of each episode. The implementation is
dependent on the algorithm (e.g. REINFORCE updates some data structures).

_init_update ()

This function is called, when parsing the dataset, at the beginning of each episode. The implementation is
dependent on the algorithm (e.g. REINFORCE resets some data structure).

_parse (sample)
Utility to parse the sample.

Parameters sample (11ist)— the current episode step.

Returns A tuple containing state, action, reward, next state, absorbing and last flag. If provided,
state is preprocessed with the features.

_update_parameters (/)
Update the parameters of the policy.

Parameters J(1ist)- listof the cumulative discounted rewards for each episode in the dataset.

3.3. Policy search 21

Mushroom Documentation, Release 1.2.0

draw_action (state)

Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

£it (dataset)
Fit step.
Parameters dataset (1ist)— the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.
class mushroom.algorithms.policy_search.policy_gradient.eNAC (policy, mdp_info,

learning_rate,
features=None,

critic_features=None)
Bases: mushroom.algorithms.policy_search.policy_gradient.policy_gradient.

PolicyGradient

Episodic Natural Actor Critic algorithm. “A Survey on Policy Search for Robotics”, Deisenroth M. P., Neumann
G., Peters J. 2013.

__init__ (policy, mdp_info, learning_rate, features=None, critic_features=None)
Constructor.

Parameters critic_features (Features, None)— features used by the critic.
_compute_gradient (/)
Return the gradient computed by the algorithm.
Parameters J (1ist)-—listof the cumulative discounted rewards for each episode in the dataset.

_step_update (x, u, r)
This function is called, when parsing the dataset, at each episode step.

Parameters
* x (np.ndarray) — the state at the current step;
* u(np.ndarray) - the action at the current step;

* r (np.ndarray) - the reward at the current step.

_episode_end_update ()
This function is called, when parsing the dataset, at the beginning of each episode. The implementation is
dependent on the algorithm (e.g. REINFORCE updates some data structures).

_init_update()
This function is called, when parsing the dataset, at the beginning of each episode. The implementation is
dependent on the algorithm (e.g. REINFORCE resets some data structure).

_parse (sample)
Utility to parse the sample.

Parameters sample (11ist)— the current episode step.

22 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Returns A tuple containing state, action, reward, next state, absorbing and last flag. If provided,
state is preprocessed with the features.

_update_parameters (/)
Update the parameters of the policy.

Parameters J(1ist)- listof the cumulative discounted rewards for each episode in the dataset.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

£it (dataset)
Fit step.

Parameters dataset (1ist) - the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

3.3.2 Black-Box optimization

class mushroom.algorithms.policy_search.black_box_optimization.RWR (distribution,
policy,
mdp_info,
beta, fea-

tures=None)
Bases: mushroom.algorithms.policy_search.black_box_optimization.

black_box_optimization.BlackBoxOptimization

Reward-Weighted Regression algorithm. “A Survey on Policy Search for Robotics”, Deisenroth M. P., Neumann
G., Peters J.. 2013.

__init__ (distribution, policy, mdp_info, beta, features=None)
Constructor.

Parameters beta (float) — the temperature for the exponential reward transformation.

_update (Jep, theta)
Function that implements the update routine of distribution parameters. Every black box algorithms should
implement this function with the proper update.

Parameters
* Jep (np.ndarray) — a vector containing the J of the considered trajectories;
* theta (np.ndarray)— a matrix of policy parameters of the considered trajectories.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.

Returns The action to be executed.

3.3. Policy search 23

Mushroom Documentation, Release 1.2.0

episode_start ()
Called by the agent when a new episode starts.

f£it (dataset)
Fit step.

Parameters dataset (1ist) - the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.
class mushroom.algorithms.policy_search.black_box_optimization.PGPE (distribution,

policy,
mdp_info,
learn-
ing_rate,
fea-

tures=None)
Bases: mushroom.algorithms.policy_search.black_box_optimization.

black_box_optimization.BlackBoxOptimization

Policy Gradient with Parameter Exploration algorithm. “A Survey on Policy Search for Robotics”, Deisenroth
M. P, Neumann G., Peters J.. 2013.

__init__ (distribution, policy, mdp_info, learning_rate, features=None)
Constructor.

Parameters learning rate (Parameter) — the learning rate for the gradient step.

_update (Jep, theta)

Function that implements the update routine of distribution parameters. Every black box algorithms should
implement this function with the proper update.

Parameters

* Jep (np.ndarray) — a vector containing the J of the considered trajectories;

* theta (np.ndarray) — a matrix of policy parameters of the considered trajectories.
draw_action (state)

Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

fit (dataset)
Fit step.
Parameters dataset (11ist) — the dataset.

stop ()

Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

24 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

class mushroom.algorithms.policy_search.black_box_optimization.REPS (distribution,
policy,
mdp_info,

eps, fea-
tures=None)
Bases: mushroom.algorithms.policy_search.black_box_optimization.

black_box_optimization.BlackBoxOptimization

Episodic Relative Entropy Policy Search algorithm. “A Survey on Policy Search for Robotics”, Deisenroth M.
P., Neumann G., Peters J.. 2013.

__init__ (distribution, policy, mdp_info, eps, features=None)
Constructor.

Parameters eps (float) — the maximum admissible value for the Kullback-Leibler diver-
gence between the new distribution and the previous one at each update step.

_update (Jep, theta)
Function that implements the update routine of distribution parameters. Every black box algorithms should
implement this function with the proper update.

Parameters
* Jep (np.ndarray) — a vector containing the J of the considered trajectories;
* theta (np.ndarray) — a matrix of policy parameters of the considered trajectories.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

£it (dataset)
Fit step.

Parameters dataset (11ist) — the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

3.4 Value-Based

3.41 TD

class mushroom.algorithms.value.td.SARSA (policy, mdp_info, learning_rate)
Bases: mushroom.algorithms.value.td.td.TD

SARSA algorithm.

__init__ (policy, mdp_info, learning_rate)
Constructor.

Parameters

3.4. Value-Based 25

Mushroom Documentation, Release 1.2.0

* approximator (object) — the approximator to use to fit the Q-function;
* learning_rate (Parameter) — the learning rate.

_update (state, action, reward, next_state, absorbing)
Update the Q-table.

Parameters
e state (np.ndarray) — state;
* action (np.ndarray) — action;
e reward (np.ndarray) — reward;
* next_state (np.ndarray) — next state;
* absorbing (np.ndarray) — absorbing flag.

static _parse (dataset)
Utility to parse the dataset that is supposed to contain only a sample.

Parameters dataset (1ist) — the current episode step.
Returns A tuple containing state, action, reward, next state, absorbing and last flag.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

fit (dataset)
Fit step.

Parameters dataset (11ist) - the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.value.td.SARSALambda (policy, mdp_info, learning_rate,
lambda_coeff, trace="replacing’)
Bases: mushroom.algorithms.value.td.td.TD

The SARSA(lambda) algorithm for finite MDPs.

__init__ (policy, mdp_info, learning_rate, lambda_coeff, trace="replacing’)
Constructor.

Parameters
* lambda coeff (float) - eligibility trace coefficient;
e trace (str, 'replacing')- type of eligibility trace to use.

_update (state, action, reward, next_state, absorbing)
Update the Q-table.

Parameters

* state (np.ndarray) — state;

26 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

e action (np.ndarray) — action;

e reward (np.ndarray) — reward;

* next_state (np.ndarray) — next state;

* absorbing (np.ndarray) — absorbing flag.

episode_start ()
Called by the agent when a new episode starts.

static _parse (dataset)
Utility to parse the dataset that is supposed to contain only a sample.

Parameters dataset (11ist)— the current episode step.
Returns A tuple containing state, action, reward, next state, absorbing and last flag.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

f£it (dataset)
Fit step.

Parameters dataset (1ist) - the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.value.td.ExpectedSARSA (policy, mdp_info, learning_rate)
Bases: mushroom.algorithms.value.td.td.TD

Expected SARSA algorithm. “A theoretical and empirical analysis of Expected Sarsa”. Seijen H. V. et al.. 2009.

__init__ (policy, mdp_info, learning_rate)
Constructor.

Parameters
* approximator (object) — the approximator to use to fit the Q-function;
* learning_rate (Parameter) — the learning rate.

_update (state, action, reward, next_state, absorbing)
Update the Q-table.

Parameters
e state (np.ndarray) — state;
* action (np.ndarray) — action;
e reward (np.ndarray) — reward;
* next_state (np.ndarray) — next state;
* absorbing (np.ndarray) — absorbing flag.

static _parse (dataset)
Utility to parse the dataset that is supposed to contain only a sample.

3.4. Value-Based 27

Mushroom Documentation, Release 1.2.0

Parameters dataset (1ist)— the current episode step.
Returns A tuple containing state, action, reward, next state, absorbing and last flag.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

£it (dataset)
Fit step.

Parameters dataset (11st) — the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.value.td.QLearning (policy, mdp_info, learning_rate)
Bases: mushroom.algorithms.value.td.td.TD

Q-Learning algorithm. “Learning from Delayed Rewards”. Watkins C.J.C.H.. 1989.

__init__ (policy, mdp_info, learning_rate)
Constructor.

Parameters
* approximator (object) — the approximator to use to fit the Q-function;
* learning_rate (Parameter) — the learning rate.

_update (state, action, reward, next_state, absorbing)
Update the Q-table.

Parameters
e state (np.ndarray) — state;
e action (np.ndarray) - action;
e reward (np.ndarray) — reward;
* next_state (np.ndarray) — next state;
* absorbing (np.ndarray) — absorbing flag.

static _parse (dataset)
Utility to parse the dataset that is supposed to contain only a sample.

Parameters dataset (11ist)— the current episode step.
Returns A tuple containing state, action, reward, next state, absorbing and last flag.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.

Returns The action to be executed.

28 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

episode_start ()
Called by the agent when a new episode starts.

f£it (dataset)
Fit step.

Parameters dataset (1ist) - the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.value.td.DoubleQLearning (policy, mdp_info, learning_rate)
Bases: mushroom.algorithms.value.td.td.TD

Double Q-Learning algorithm. “Double Q-Learning”. Hasselt H. V.. 2010.

__init__ (policy, mdp_info, learning_rate)
Constructor.

Parameters
* approximator (object) — the approximator to use to fit the Q-function;
* learning_rate (Parameter) — the learning rate.

_update (state, action, reward, next_state, absorbing)
Update the Q-table.

Parameters
* state (np.ndarray) — state;
e action (np.ndarray) — action;
e reward (np.ndarray) — reward;
* next_state (np.ndarray) — next state;
* absorbing (np.ndarray) — absorbing flag.

static _parse (dataset)
Utility to parse the dataset that is supposed to contain only a sample.

Parameters dataset (1ist) - the current episode step.
Returns A tuple containing state, action, reward, next state, absorbing and last flag.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

f£it (dataset)
Fit step.

Parameters dataset (1ist)— the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

3.4. Value-Based 29

Mushroom Documentation, Release 1.2.0

class mushroom.algorithms.value.td.SpeedyQLearning (policy, mdp_info, learning_rate)
Bases: mushroom.algorithms.value.td.td.TD

Speedy Q-Learning algorithm. “Speedy Q-Learning”. Ghavamzadeh et. al.. 2011.

__init__ (policy, mdp_info, learning_rate)
Constructor.

Parameters
* approximator (object) — the approximator to use to fit the Q-function;
* learning_rate (Parameter) — the learning rate.

_update (state, action, reward, next_state, absorbing)
Update the Q-table.

Parameters
* state (np.ndarray) — state;
e action (np.ndarray) — action;
e reward (np.ndarray) — reward;
* next_state (np.ndarray) — next state;
* absorbing (np.ndarray) — absorbing flag.

static _parse (dataset)
Utility to parse the dataset that is supposed to contain only a sample.

Parameters dataset (1ist) - the current episode step.
Returns A tuple containing state, action, reward, next state, absorbing and last flag.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

£it (dataset)
Fit step.

Parameters dataset (1ist) - the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.value.td.RLearning (policy, mdp_info, learning_rate, beta)
Bases: mushroom.algorithms.value.td.td.TD

R-Learning algorithm. “A Reinforcement Learning Method for Maximizing Undiscounted Rewards”. Schwartz
A.. 1993.

__init__ (policy, mdp_info, learning_rate, beta)
Constructor.

Parameters beta (Parameter) — beta coefficient.

30 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

_update (state, action, reward, next_state, absorbing)
Update the Q-table.

Parameters
* state (np.ndarray) — state;
e action (np.ndarray) — action;
e reward (np.ndarray) —reward;
* next_state (np.ndarray) — next state;
* absorbing (np.ndarray) — absorbing flag.

static _parse (dataset)
Utility to parse the dataset that is supposed to contain only a sample.

Parameters dataset (1ist) — the current episode step.
Returns A tuple containing state, action, reward, next state, absorbing and last flag.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

£it (dataset)
Fit step.

Parameters dataset (1ist) - the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.value.td.WeightedQLearning (policy, mdp_info,
learning_rate, sam-
pling=True, precision=1000,

weighted_policy=False)
Bases: mushroom.algorithms.value.td.td.TD

Weighted Q-Learning algorithm. “Estimating the Maximum Expected Value through Gaussian Approximation”.
D’Eramo C. et. al.. 2016.

__init__ (policy, mdp_info, learning_rate, sampling=True, precision=1000, weighted_policy=False)
Constructor.

Parameters
* sampling (bool, True)- use the approximated version to speed up the computation;
e precision (int, 1000)-number of samples to use in the approximated version.

_update (state, action, reward, next_state, absorbing)
Update the Q-table.

Parameters

* state (np.ndarray) — state;

3.4. Value-Based 31

Mushroom Documentation, Release 1.2.0

e action (np.ndarray) — action;
e reward (np.ndarray) — reward;
* next_state (np.ndarray) — next state;
* absorbing (np.ndarray) — absorbing flag.
_next_q (next_state)
Parameters next_state (np.ndarray) — the state where next action has to be evaluated.
Returns The weighted estimator value in next_state.

static _parse (dataset)
Utility to parse the dataset that is supposed to contain only a sample.

Parameters dataset (11ist) — the current episode step.
Returns A tuple containing state, action, reward, next state, absorbing and last flag.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

£it (dataset)
Fit step.
Parameters dataset (1ist)— the dataset.
stop ()

Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.value.td.RQLearning (policy, mdp_info, learning_rate,
off_policy=False, beta=None,
delta=None)

Bases: mushroom.algorithms.value.td.td.TD

RQ-Learning algorithm. “Exploiting Structure and Uncertainty of Bellman Updates in Markov Decision Pro-
cesses”. Tateo D. et al.. 2017.

__init__ (policy, mdp_info, learning_rate, off_policy=False, beta=None, delta=None)
Constructor.

Parameters
* off_policy (bool, False)— whether to use the off policy setting or the online one;
* beta (Parameter, None) - beta coefficient;
e delta (Parameter, None) - delta coefficient.

static _parse (dataset)
Utility to parse the dataset that is supposed to contain only a sample.

Parameters dataset (1ist)— the current episode step.

Returns A tuple containing state, action, reward, next state, absorbing and last flag.

32 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

_update (state, action, reward, next_state, absorbing)
Update the Q-table.

Parameters
* state (np.ndarray) — state;
e action (np.ndarray) — action;
e reward (np.ndarray) —reward;
* next_state (np.ndarray) — next state;
* absorbing (np.ndarray) — absorbing flag.

draw_action (state)

Return the action to execute in the given state. It is the action returned by the policy or the action set by

the algorithm (e.g. in the case of SARSA).
Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

£it (dataset)
Fit step.

Parameters dataset (1ist) - the dataset.

stop ()

Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup

environments internals after a core learn/evaluate to enforce consistency.
_next_qg (next_state)
Parameters next_state (np.ndarray) — the state where next action has to be evaluated.
Returns The weighted estimator value in ‘next_state’.

class mushroom.algorithms.value.td.SARSALambdaContinuous (approximator, pol-
icy, mdp_info, learn-
ing_rate, lambda_coeff,
features, approxima-

tor_params=None)
Bases: mushroom.algorithms.value.td.td.TD

Continuous version of SARSA(lambda) algorithm.

__init__ (approximator, policy, mdp_info, learning_rate, lambda_coeff, features, approxima-

tor_params=None)
Constructor.

Parameters lambda_coeff (float) — eligibility trace coefficient.

_update (state, action, reward, next_state, absorbing)
Update the Q-table.

Parameters
* state (np.ndarray) — state;
* action (np.ndarray) - action;

e reward (np.ndarray) — reward;

3.4. Value-Based

33

Mushroom Documentation, Release 1.2.0

* next_state (np.ndarray) — next state;
* absorbing (np.ndarray) — absorbing flag.

episode_start ()
Called by the agent when a new episode starts.

static _parse (dataset)
Utility to parse the dataset that is supposed to contain only a sample.

Parameters dataset (1ist)— the current episode step.
Returns A tuple containing state, action, reward, next state, absorbing and last flag.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

fit (dataset)
Fit step.

Parameters dataset (11ist) — the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.value.td.TrueOnlineSARSALambda (policy, mdp_info, learn-
ing_rate, lambda_coeff,
features, approxima-

tor_params=None)
Bases: mushroom.algorithms.value.td.td.TD

True Online SARSA(lambda) with linear function approximation. “True Online TD(lambda)”. Seijen H. V. et
al.. 2014.

__init__ (policy, mdp_info, learning_rate, lambda_coeff, features, approximator_params=None)
Constructor.

Parameters lambda_coeff (float) — eligibility trace coefficient.

_update (state, action, reward, next_state, absorbing)
Update the Q-table.

Parameters
e state (np.ndarray) - state;
e action (np.ndarray) — action;
e reward (np.ndarray) — reward;
* next_state (np.ndarray) — next state;
* absorbing (np.ndarray) — absorbing flag.

episode_start ()
Called by the agent when a new episode starts.

static _parse (dataset)
Utility to parse the dataset that is supposed to contain only a sample.

Parameters dataset (1ist) — the current episode step.

34 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Returns A tuple containing state, action, reward, next state, absorbing and last flag.

draw_action (state)

Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

£it (dataset)
Fit step.

Parameters dataset (11ist) - the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

3.4.2 Batch TD

class mushroom.algorithms.value.batch_td.FQI (approximator, policy, mdp_info,
n_iterations, fit_params=None, ap-
proximator_params=None, quiet=False,

boosted=False)
Bases: mushroom.algorithms.value.batch_td.batch_td.BatchTD

Fitted Q-Iteration algorithm. “Tree-Based Batch Mode Reinforcement Learning”, Ernst D. et al.. 2005.

__init__ (approximator, policy, mdp_info, n_iterations, fit_params=None, approxima-
tor_params=None, quiet=False, boosted=False)
Constructor.

Parameters
* n_iterations (int)— number of iterations to perform for training;
* quiet (bool, False)— whether to show the progress bar or not;
¢ boosted (bool, False)- whether to use boosted FQI or not.

£it (dataset)
Fit loop.

_fit (x)
Single fit iteration.

Parameters x (11ist) — the dataset.

_fit_boosted (x)
Single fit iteration for boosted FQI.

Parameters x (1ist) — the dataset.

draw_action (state)

Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

3.4. Value-Based 35

Mushroom Documentation, Release 1.2.0

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.value.batch_td.DoubleFQI (approximator, policy, mdp_info,
n_iterations, fit_params=None,
approximator_params=None,

quiet=False)
Bases: mushroom.algorithms.value.batch_td.fgi.FQI

Double Fitted Q-Iteration algorithm. “Estimating the Maximum Expected Value in Continuous Reinforcement
Learning Problems”. D’Eramo C. et al.. 2017.

__init__ (approximator, policy, mdp_info, n_iterations, fit_params=None, approxima-
tor_params=None, quiet=False)
Constructor.

Parameters
* n_iterations (int)— number of iterations to perform for training;
* quiet (bool, False)— whether to show the progress bar or not;
¢ boosted (bool, False)- whether to use boosted FQI or not.

_fit (x)
Single fit iteration.

Parameters x (1ist)— the dataset.

_fit _boosted (x)
Single fit iteration for boosted FQI.

Parameters x (I11st) - the dataset.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

f£it (dataset)
Fit loop.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.value.batch_td.LSPI (policy, mdp_info, epsilon=0.01,
fit_params=None, approxima-

tor_params=None, features=None)
Bases: mushroom.algorithms.value.batch_td.batch_td.BatchTD

Least-Squares Policy Iteration algorithm. “Least-Squares Policy Iteration”. Lagoudakis M. G. and Parr R..

2003.
__init__ (policy, mdp_info, epsilon=0.01, fit_params=None, approximator_params=None, fea-
tures=None)
Constructor.

36 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Parameters epsilon (float, I1e-2)-termination coefficient.

fit (dataset)
Fit step.

Parameters dataset (1ist) - the dataset.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

3.4.3 DQN

class mushroom.algorithms.value.dqgn.DQN (approximator, policy, mdp_info, batch_size, ap-
proximator_params, target_update_frequency,
replay_memory=None, initial_replay_size=500,
max_replay_size=5000, fit_params=None,

n_approximators=1, clip_reward=True)
Bases: mushroom.algorithms.agent.Agent

Deep Q-Network algorithm. “Human-Level Control Through Deep Reinforcement Learning”. Mnih V. et al..

2015.

__init__ (approximator, policy, mdp_info, batch_size, approximator_params, tar-
get_update_frequency, replay_memory=None, initial_replay_size=500,
max_replay_size=5000, fit_params=None, n_approximators=1, clip_reward=True)

Constructor.
Parameters

* approximator (object) — the approximator to use to fit the Q-function;
* batch_size (int) — the number of samples in a batch;
* approximator_params (dict) — parameters of the approximator to build;

* target_update_frequency (int)—the number of samples collected between each
update of the target network;

* replay_memory ([ReplayMemory, PrioritizedReplayMemory], None)
— the object of the replay memory to use; if None, a default replay memory is created;

* initial_replay_ size (int)— the number of samples to collect before starting the
learning;

* max_replay_size (int)- the maximum number of samples in the replay memory;
* fit_params (dict, None)-parameters of the fitting algorithm of the approximator;
* n_approximators (int, I1)-the number of approximator to use in AverageDQN;

* clip_reward (bool, True)— whether to clip the reward or not.

3.4. Value-Based 37

Mushroom Documentation, Release 1.2.0

£it (dataset)
Fit step.

Parameters dataset (11ist) — the dataset.

_update_target ()
Update the target network.

_next_q (next_state, absorbing)
Parameters
* next_state (np.ndarray) — the states where next action has to be evaluated;
* absorbing (np.ndarray) — the absorbing flag for the states in next_state.
Returns Maximum action-value for each state in next_state.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.value.dgn.DoubleDQN (approximator, policy, mdp_info,
batch_size, approximator_params,
target_update_frequency, re-
play_memory=None, ini-

tial_replay_size=500,
max_replay_size=5000,
fit_params=None, n_approximators=1,

clip_reward=True)
Bases: mushroom.algorithms.value.dgn.dgn.DQON

Double DOQN algorithm. “Deep Reinforcement Learning with Double Q-Learning”. Hasselt H. V. et al.. 2016.
_next_q (next_state, absorbing)
Parameters
* next_state (np.ndarray) — the states where next action has to be evaluated;
* absorbing (np.ndarray) — the absorbing flag for the states in next_state.

Returns Maximum action-value for each state in next_state.

__init__ (approximator, policy, mdp_info, batch_size, approximator_params, tar-
get_update_frequency, replay_memory=None, initial_replay_size=500,
max_replay_size=5000, fit_params=None, n_approximators=1, clip_reward=True)

Constructor.
Parameters

* approximator (object) — the approximator to use to fit the Q-function;

* batch_size (int) — the number of samples in a batch;

38 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

* approximator_params (dict) — parameters of the approximator to build;

* target_update_frequency (int)—the number of samples collected between each
update of the target network;

* replay_memory ([ReplayMemory, PrioritizedReplayMemory], None)
— the object of the replay memory to use; if None, a default replay memory is created;

* initial_replay_ size (int)— the number of samples to collect before starting the
learning;

* max_replay_size (int)- the maximum number of samples in the replay memory;

* fit_params (dict, None)-parameters of the fitting algorithm of the approximator;
* n_approximators (int, 1)-the number of approximator to use in AverageDQN;
* clip reward (bool, True)- whether to clip the reward or not.

_update_target ()
Update the target network.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

£it (dataset)
Fit step.

Parameters dataset (1ist) - the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

class mushroom.algorithms.value.dgn.AveragedDQN (approximator, policy, mdp_info,

**params)
Bases: mushroom.algorithms.value.dgn.dgn.DQN

Averaged-DQN algorithm. “Averaged-DQN: Variance Reduction and Stabilization for Deep Reinforcement
Learning”. Anschel O. et al.. 2017.

__init__ (approximator, policy, mdp_info, **params)
Constructor.

Parameters
* approximator (object) — the approximator to use to fit the Q-function;
* batch_size (int) - the number of samples in a batch;
* approximator_params (dict) — parameters of the approximator to build;

* target_update_frequency (int)—the number of samples collected between each
update of the target network;

* replay_memory ([ReplayMemory, PrioritizedReplayMemory], None)
— the object of the replay memory to use; if None, a default replay memory is created;

3.4. Value-Based 39

Mushroom Documentation, Release 1.2.0

* initial_replay_size (int)— the number of samples to collect before starting the
learning;

* max_replay size (int)- the maximum number of samples in the replay memory;

* fit params (dict, None)- parameters of the fitting algorithm of the approximator;
* n_approximators (int, I)-the number of approximator to use in AverageDQN;
* clip_reward (bool, True)-— whether to clip the reward or not.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

fit (dataset)
Fit step.

Parameters dataset (11ist) — the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

_update_target ()
Update the target network.

_next_q (next_state, absorbing)
Parameters
* next_state (np.ndarray) — the states where next action has to be evaluated;
* absorbing (np.ndarray) — the absorbing flag for the states in next_state.
Returns Maximum action-value for each state in next_state.

class mushroom.algorithms.value.dgn.CategoricalDQN (policy, mdp_info, n_atoms, v_min,
v_max, approximator_params,

**params)
Bases: mushroom.algorithms.value.dgn.dgn.DON

Categorical DQN algorithm. “A Distributional Perspective on Reinforcement Learning”. Bellemare M. et al..
2017.

__init__ (policy, mdp_info, n_atoms, v_min, v_max, approximator_params, **params)
Constructor.

Parameters
e n_atoms (int)— number of atoms;
e v_min (float)— minimum value of value-function;
e v_max (float)— maximum value of value-function.
_next_q (next_state, absorbing)
Parameters

* next_state (np.ndarray) — the states where next action has to be evaluated;

40 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

* absorbing (np.ndarray) — the absorbing flag for the states in next_state.
Returns Maximum action-value for each state in next_state.

_update_target ()
Update the target network.

draw_action (state)
Return the action to execute in the given state. It is the action returned by the policy or the action set by
the algorithm (e.g. in the case of SARSA).

Parameters state (np.ndarray) — the state where the agent is.
Returns The action to be executed.

episode_start ()
Called by the agent when a new episode starts.

fit (dataset)
Fit step.

Parameters dataset (1ist)— the dataset.

stop ()
Method used to stop an agent. Useful when dealing with real world environments, simulators, or to cleanup
environments internals after a core learn/evaluate to enforce consistency.

3.5 Approximators

Mushroom exposes the high-level class Regressor that can manage any type of function regressor. This class is a
wrapper for any kind of function approximator, e.g. a scikit-learn approximator or a pytorch neural network.

3.5.1 Regressor

class mushroom.approximators.regressor.Regressor (approximator, input_shape, out-
put_shape=(1,), n_actions=None,

n_models=1, **params)
Bases: object

This class implements the function to manage a function approximator. This class selects the appropriate kind
of regressor to implement according to the parameters provided by the user; this makes this class the only one to
use for each kind of task that has to be performed. The inference of the implementation to choose is done check-
ing the provided values of parameters n_actions. If n_actions is provided, it means that the user wants
to implement an approximator of the Q-function: if the value of n_actions is equal to the output_shape
then a QRegressor is created, else (output_shape should be (1,)) an ActionRegressor is created.
Otherwise a GenericRegressor is created. An Ensemble model can be used for all the previous imple-
mentations listed before simply providing a n_models parameter greater than 1.

__init__ (approximator, input_shape, output_shape=(1,), n_actions=None, n_models=1, **params)
Constructor.

Parameters
* approximator (object) — the approximator class to use to create the model;
e input_shape (tuple) — the shape of the input of the model;

* output_shape (tuple, (1,))-the shape of the output of the model;

3.5. Approximators 41

Mushroom Documentation, Release 1.2.0

e n_actions (int, None)— number of actions considered to create a QRegressor
oran ActionRegressor;

e n_models (int, I1)-number of models to create;
* xxparams (dict) — other parameters to create each model.

__call__ (*z, **predict_params)
Call self as a function.

fit (*z, ¥¥fit_params)
Fit the model.

Parameters
e xz (1ist) - list of input of the model;
* xxfit_params (dict)— parameters to use to fit the model.

predict (*z, **predict_params)
Predict the output of the model given an input.

Parameters
e xz (1ist) - list of input of the model;
* xxpredict_params (dict)— parameters to use to predict with the model.

Returns The model prediction.

model
The model object.
Type Returns
reset ()

Reset the model parameters.

input_shape
The shape of the input of the model.

Type Returns

output_shape
The shape of the output of the model.

Type Returns

weights_size
The shape of the weights of the model.

Type Returns
get_weights ()

Returns The weights of the model.
set_weights (w)

Parameters w (1ist) — list of weights to be set in the model.
diff (*z)

Parameters *z (1ist) — the input of the model.

Returns The derivative of the model.

42 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

3.5.2 Approximator

Linear

class mushroom.approximators.parametric.linear.LinearApproximator (weights=None,
in-
put_shape=None,
out-
put_shape=(1,
),

**kwargs)
Bases: object

This class implements a linear approximator.

__init__ (weights=None, input_shape=None, output_shape=(1,), **kwargs)
Constructor.

Parameters

weights (np.ndarray) — array of weights to initialize the weights of the approxima-
tor;

* input_shape (np.ndarray, None)-the shape of the input of the model;
* output_shape (np.ndarray, (1,))- the shape of the output of the model;
e xxkwargs (dict) — other params of the approximator.

fit (x,y, **it_params)
Fit the model.

Parameters
* x (np.ndarray) — input;
* y(np.ndarray) — target;

* xxfit_params (dict) — other parameters used by the fit method of the regressor.

predict (x, **predict_params)
Predict.

Parameters
* x (np.ndarray) — input;

* xxpredict_params (dict)— other parameters used by the predict method the regres-
SOr.

Returns The predictions of the model.

weights_size
The size of the array of weights.

Type Returns

get_weights ()
Getter.

Returns The set of weights of the approximator.

set_weights (w)
Setter.

3.5. Approximators 43

Mushroom Documentation, Release 1.2.0

Parameters w (np.ndarray) — the set of weights to set.

diff (state, action=None)
Compute the derivative of the output w.r.t. state, and action if provided.

Parameters

state (np.ndarray) — the state;

action (np.ndarray, None)- the action.

Returns The derivative of the output w.r.t. state, and action if provided.

Torch Approximator

class mushroom.approximators.parametric.torch_approximator.TorchApproximator (input_shape,

Bases: object

out-

put_shape,

net-

work,

op-

ti-

mizer=None,
loss=None,
batch_size=0,
n_fit_targets=1,
use_cuda=False,
reini-

tial-

ize=Fualse,
dropout=False,
quiet=True,
**params)

Class to interface a pytorch model to the mushroom Regressor interface. This class implements all is needed to
use a generic pytorch model and train it using a specified optimizer and objective function. This class supports
also minibatches.

__init_ (input_shape, output_shape, network, optimizer=None, loss=None, batch_size=0,
n_fit_targets=1, use_cuda=False, reinitialize=False, dropout=False, quiet=True,
**params)

Constructor.
Parameters

input_shape (tuple) — shape of the input of the network;

output_shape (tuple) — shape of the output of the network;

network (torch.nn.Module) — the network class to use;

optimizer (dict) — the optimizer used for every fit step;

loss (torch.nn. functional) — the loss function to optimize in the fit method;

batch_size (int, 0) - the size of each minibatch. If 0, the whole dataset is fed to
the optimizer at each epoch;

n_fit_targets (int, I1)- the number of fit targets used by the fit method of the
network;

44

Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

¢ use_cuda (bool, False)—if True, runs the network on the GPU;
* reinitialize (bool, False)—if True, the approximator is re

* at every fit call. To perform the initialization, the
(initialized)—

* method must be defined properly for the selected
(weights_init)-—

* network. (model) —
e dropout (bool, False) - if True, dropout is applied only during train;

* quiet (bool, True) - if False, shows two progress bars, one for epochs and one for
the minibatches;

* params (dict) — dictionary of parameters needed to construct the network.

predict (*args, output_tensor=False, **kwargs)
Predict.

Parameters
* args (1ist)—input;
* output_tensor (bool, False)— whether to return the output as tensor or not;
* xxkwargs (dict) — other parameters used by the predict method the regressor.
Returns The predictions of the model.

fit (*args, n_epochs=None, weights=None, epsilon=None, patience=1, validation_split=1.0,
*rkwargs)
Fit the model.

Parameters

* xargs (list)—input, where the last n_fit_targets elements are considered as the
target, while the others are considered as input;

* n_epochs (int, None)—the number of training epochs;

* weights (np.ndarray, None) - the weights of each sample in the computation of
the loss;

* epsilon (float, None) - the coefficient used for early stopping;

* patience (float, 1.)- the number of epochs to wait until stop the learning if not
improving;

* validation_split (float, 1.)- the percentage of the dataset to use as training
set;

* xxkwargs (dict) — other parameters used by the fit method of the regressor.

set_weights (weights)
Setter.

Parameters w (np.ndarray) — the set of weights to set.

get_weights ()
Getter.

Returns The set of weights of the approximator.

weights_size
The size of the array of weights.

3.5.

Approximators 45

Mushroom Documentation, Release 1.2.0

Type Returns

diff (*args, **kwargs)
Compute the derivative of the output w.r.t. state, and action if provided.

Parameters
e state (np.ndarray) — the state;
e action (np.ndarray, None)- the action.

Returns The derivative of the output w.r.t. state, and action if provided.

3.6 Distributions

class mushroom.distributions.distribution.Distribution
Bases: object

Interface for Distributions to represent a generic probability distribution. Probability distributions are often used
by black box optimization algorithms in order to perform exploration in parameter space. In literature, they are
also known as high level policies.

sample ()
Draw a sample from the distribution.

Returns A random vector sampled from the distribution.

log_pdf (theta)
Compute the logarithm of the probability density function in the specified point

Parameters theta (np.ndarray) — the point where the log pdf is calculated
Returns The value of the log pdf in the specified point.

__call__ (theta)
Compute the probability density function in the specified point

Parameters theta (np.ndarray) — the point where the pdf is calculated
Returns The value of the pdf in the specified point.

mle (theta, weights=None)
Compute the (weighted) maximum likelihood estimate of the points, and update the distribution accord-
ingly.
Parameters

* theta (np.ndarray) — a set of points, every row is a sample

* weights (np.ndarray, None)- a vector of weights. If specified the weighted max-
imum likelihood estimate is computed instead of the plain maximum likelihood. The
number of elements of this vector must be equal to the number of rows of the theta matrix.

diff_log (theta)
Compute the derivative of the gradient of the probability denstity function in the specified point.

Parameters
e theta (np.ndarray) — the point where the gradient of the log pdf is
* calculated -

Returns The gradient of the log pdf in the specified point.

46 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

diff (theta)
Compute the derivative of the probability density function, in the specified point. Normally it is computed
w.r.t. the derivative of the logarithm of the probability density function, exploiting the likelihood ratio
trick, i.e.:

V,p(0) = p(8)V,logp(6)

Parameters
e theta (np.ndarray) — the point where the gradient of the pdf is
* calculated. —

Returns The gradient of the pdf in the specified point.

get_parameters ()
Getter.

Returns The current distribution parameters.

set_parameters (rho)
Setter.

Parameters rho (np.ndarray) — the vector of the new parameters to be used by the distri-
bution

parameters_size
Property.

Returns The size of the distribution parameters.
__init
Initialize self. See help(type(self)) for accurate signature.

3.6.1 Gaussian

class mushroom.distributions.gaussian.GaussianDistribution (mu, sigma)
Bases: mushroom.distributions.distribution.Distribution
Gaussian distribution with fixed covariance matrix. The parameters vector represents only the mean.

__dinit__ (mu, sigma)
Initialize self. See help(type(self)) for accurate signature.

sample ()
Draw a sample from the distribution.

Returns A random vector sampled from the distribution.

log_pdf (theta)
Compute the logarithm of the probability density function in the specified point

Parameters theta (np.ndarray) — the point where the log pdf is calculated
Returns The value of the log pdf in the specified point.

__call_ (theta)
Compute the probability density function in the specified point

Parameters theta (np.ndarray) — the point where the pdf is calculated

Returns The value of the pdf in the specified point.

3.6. Distributions 47

Mushroom Documentation, Release 1.2.0

mle (theta, weights=None)
Compute the (weighted) maximum likelihood estimate of the points, and update the distribution accord-
ingly.
Parameters

* theta (np.ndarray) — a set of points, every row is a sample

* weights (np.ndarray, None)- avector of weights. If specified the weighted max-
imum likelihood estimate is computed instead of the plain maximum likelihood. The
number of elements of this vector must be equal to the number of rows of the theta matrix.

diff_log (theta)
Compute the derivative of the gradient of the probability denstity function in the specified point.

Parameters
* theta (np.ndarray) — the point where the gradient of the log pdf is
* calculated -

Returns The gradient of the log pdf in the specified point.

get_parameters ()
Getter.

Returns The current distribution parameters.

set_parameters (rho)
Setter.

Parameters rho (np.ndarray) — the vector of the new parameters to be used by the distri-
bution

parameters_size
Property.

Returns The size of the distribution parameters.

diff (theta)
Compute the derivative of the probability density function, in the specified point. Normally it is computed
w.r.t. the derivative of the logarithm of the probability density function, exploiting the likelihood ratio
trick, i.e.:

Vop(0) = p(0)V, log p(0)
Parameters
* theta (np.ndarray) — the point where the gradient of the pdf is
* calculated. —
Returns The gradient of the pdf in the specified point.

class mushroom.distributions.gaussian.GaussianDiagonalDistribution (mu, std)
Bases: mushroom.distributions.distribution.Distribution

Gaussian distribution with diagonal covariance matrix. The parameters vector represents the mean and the
standard deviation for each dimension.

__init_ (mu, std)
Initialize self. See help(type(self)) for accurate signature.

sample ()
Draw a sample from the distribution.

48 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Returns A random vector sampled from the distribution.

log_pdf (theta)
Compute the logarithm of the probability density function in the specified point

Parameters theta (np.ndarray) — the point where the log pdf is calculated
Returns The value of the log pdf in the specified point.

__call_ (theta)
Compute the probability density function in the specified point

Parameters theta (np.ndarray) — the point where the pdf is calculated
Returns The value of the pdf in the specified point.

mle (theta, weights=None)
Compute the (weighted) maximum likelihood estimate of the points, and update the distribution accord-

ingly.
Parameters

* theta (np.ndarray) — a set of points, every row is a sample

* weights (np.ndarray, None)- avector of weights. If specified the weighted max-
imum likelihood estimate is computed instead of the plain maximum likelihood. The
number of elements of this vector must be equal to the number of rows of the theta matrix.

diff_log (theta)
Compute the derivative of the gradient of the probability denstity function in the specified point.

Parameters
* theta (np.ndarray) — the point where the gradient of the log pdf is
* calculated -

Returns The gradient of the log pdf in the specified point.

get_parameters ()
Getter.

Returns The current distribution parameters.

set_parameters (rho)
Setter.

Parameters rho (np.ndarray) — the vector of the new parameters to be used by the distri-
bution

parameters_size
Property.

Returns The size of the distribution parameters.

diff (theta)
Compute the derivative of the probability density function, in the specified point. Normally it is computed
w.r.t. the derivative of the logarithm of the probability density function, exploiting the likelihood ratio
trick, i.e.:

V,p(0) = p(0)V, logp(0)
Parameters

* theta (np.ndarray) —the point where the gradient of the pdf is

3.6.

Distributions 49

Mushroom Documentation, Release 1.2.0

* calculated. -
Returns The gradient of the pdf in the specified point.

class mushroom.distributions.gaussian.GaussianCholeskyDistribution (mu,

sigma)
Bases: mushroom.distributions.distribution.Distribution

Gaussian distribution with full covariance matrix. The parameters vector represents the mean and the Cholesky
decomposition of the covariance matrix. This parametrization enforce the covariance matrix to be positive
definite.

__dinit__ (mu, sigma)
Initialize self. See help(type(self)) for accurate signature.

sample ()
Draw a sample from the distribution.

Returns A random vector sampled from the distribution.

log_pdf (theta)
Compute the logarithm of the probability density function in the specified point

Parameters theta (np.ndarray) — the point where the log pdf is calculated
Returns The value of the log pdf in the specified point.

__call__ (theta)
Compute the probability density function in the specified point

Parameters theta (np.ndarray) — the point where the pdf is calculated
Returns The value of the pdf in the specified point.

mle (theta, weights=None)
Compute the (weighted) maximum likelihood estimate of the points, and update the distribution accord-
ingly.
Parameters

* theta (np.ndarray) — a set of points, every row is a sample

* weights (np.ndarray, None)-avector of weights. If specified the weighted max-
imum likelihood estimate is computed instead of the plain maximum likelihood. The
number of elements of this vector must be equal to the number of rows of the theta matrix.

diff_log (theta)
Compute the derivative of the gradient of the probability denstity function in the specified point.

Parameters
* theta (np.ndarray) — the point where the gradient of the log pdf is
* calculated -

Returns The gradient of the log pdf in the specified point.

get_parameters ()
Getter.

Returns The current distribution parameters.

set_parameters (rho)
Setter.

Parameters rho (np.ndarray) — the vector of the new parameters to be used by the distri-
bution

50 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

parameters_size
Property.

Returns The size of the distribution parameters.

diff (theta)
Compute the derivative of the probability density function, in the specified point. Normally it is computed
w.r.t. the derivative of the logarithm of the probability density function, exploiting the likelihood ratio
trick, i.e.:

V,p(0) = p(0)V,log p(9)
Parameters
* theta (np.ndarray) — the point where the gradient of the pdf is

e calculated. -

Returns The gradient of the pdf in the specified point.

3.7 Environments

In mushroom we distinguish between two different types of environment classes:

* proper environments

¢ generators

While environments directly implement the Environment interface, generators are a set of methods used to generate
finite markov chains that represent a specific environment e.g., grid worlds.

3.7.1 Environments

Atari

class mushroom.environments.atari.MaxAndSkip (env, skip, max_pooling=True)

Bases: gym.core.Wrapper

__init__ (env, skip, max_pooling=True)
Initialize self. See help(type(self)) for accurate signature.

step (action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).
Parameters action (object) — an action provided by the agent

Returns agent’s observation of the current environment reward (float) : amount of reward re-
turned after previous action done (bool): whether the episode has ended, in which case further
step() calls will return undefined results info (dict): contains auxiliary diagnostic information
(helpful for debugging, and sometimes learning)

Return type observation (object)

reset (**kwargs)
Resets the state of the environment and returns an initial observation.

Returns the initial observation.

3.7.

Environments 51

Mushroom Documentation, Release 1.2.0

Return type observation (object)

close ()
Override close in your subclass to perform any necessary cleanup.

Environments will automatically close() themselves when garbage collected or when the program exits.

render (mode="human’, **kwargs)
Renders the environment.

The set of supported modes varies per environment. (And some environments do not support rendering at
all.) By convention, if mode is:

* human: render to the current display or terminal and return nothing. Usually for human consumption.

* rgb_array: Return an numpy.ndarray with shape (x, y, 3), representing RGB values for an x-by-y pixel
image, suitable for turning into a video.

* ansi: Return a string (str) or StringlO.StringlO containing a terminal-style text representation. The
text can include newlines and ANSI escape sequences (e.g. for colors).

Note:

Make sure that your class’s metadata ‘render.modes’ key includes the list of supported modes. It’s
recommended to call super() in implementations to use the functionality of this method.

Parameters mode (str)— the mode to render with

Example:
class MyEnv(Env): metadata = { ‘render.modes’: [‘human’, ‘rgb_array’]}
def render(self, mode="human’):
if mode == ‘rgb_array’: return np.array(...) # return RGB frame suitable for video
elif mode == ‘human’: ... # pop up a window and render
else: super(MyEnv, self).render(mode=mode) # just raise an exception

seed (seed=None)
Sets the seed for this env’s random number generator(s).

Note: Some environments use multiple pseudorandom number generators. We want to capture all such
seeds used in order to ensure that there aren’t accidental correlations between multiple generators.

Returns

Returns the list of seeds used in this env’s random number generators. The first value in
the list should be the “main” seed, or the value which a reproducer should pass to ‘seed’.
Often, the main seed equals the provided ‘seed’, but this won’t be true if seed=None, for
example.

Return type list<bigint>
unwrapped
Completely unwrap this env.

Returns The base non-wrapped gym.Env instance

52

Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Return type gym.Env

class mushroom.environments.atari.LazyFrames (frames, history_length)
Bases: object

From OpenAl Baseline. https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py

__init__ (frames, history_length)
Initialize self. See help(type(self)) for accurate signature.

class mushroom.environments.atari.Atari (name, width=84, height=84, ends_at_life=False,
max_pooling=True, history_length=4,

max_no_op_actions=30)
Bases: mushroom.environments.environment.Environment

The Atari environment as presented in: “Human-level control through deep reinforcement learning”. Mnih et.
al.. 2015.

__init__ (name, width=84, height=84, ends_at_life=False, max_pooling=True, history_length=4,

max_no_op_actions=30)
Constructor.

Parameters
* name (str) - id name of the Atari game in Gym;
e width (int, 84)— width of the screen;
* height (int, 84) - height of the screen;
* ends_at_1life (bool, False)-— whether the episode ends when a life is lost or not;

* max_pooling (bool, True)— whether to do max-pooling or average-pooling of the
last two frames when using NoFrameskip;

* history_length (int, 4)-number of frames to form a state;

* max_no_op_actions (int, 30)- maximum number of no-op action to execute at
the beginning of an episode.

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None)— the state to set to the current state.
Returns The current state.

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) — the action to execute.

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

stop ()
Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when
using openai-gym rendering

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters

¢ x — the variable to bound;

3.7. Environments 53

https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py

Mushroom Documentation, Release 1.2.0

e min_value — the minimum value;
e max_value — the maximum value;
Returns The bounded variable.

info
An object containing the info of the environment.

Type Returns

seed (seed)
Set the seed of the environment.

Parameters seed (float) — the value of the seed.

set_episode_end (ends_at_life)
Setter.

Parameters ends_at_1life (bool)— whether the episode ends when a life is lost or not.

Car on hill
class mushroom.environments.car_on_hill.CarOnHill (horizon=100, gamma=0.95)
Bases: mushroom.environments.environment.Environment

The Car On Hill environment as presented in: “Tree-Based Batch Mode Reinforcement Learning”. Ernst D. et
al.. 2005.

__init__ (horizon=100, gamma=0.95)
Constructor.

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None) - the state to set to the current state.
Returns The current state.

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) — the action to execute.

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters
¢ x — the variable to bound;
e min_value - the minimum value;
e max_value — the maximum value;
Returns The bounded variable.

info
An object containing the info of the environment.

Type Returns

54 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

seed (seed)
Set the seed of the environment.

Parameters seed (f1oat) — the value of the seed.

stop ()
Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when
using openai-gym rendering

DeepMind Control Suite

class mushroom.environments.dm_ control_ env.DMControl (domain_name, task_name,

horizon, gamma,
task_kwargs=None,
dt=0.01, width_screen=480,
height_screen=480, cam-
era_id=0)

Bases: mushroom.environments.environment .Environment

Interface for dm_control suite Mujoco environments. It makes it possible to use every dm_control suite Mujoco

environment just providing the necessary information.

__init__ (domain_name, task_name, horizon, gamma, task_kwargs=None, dr=0.01,
width_screen=480, height_screen=480, camera_id=0)
Constructor.
Parameters

¢ domain_name (str) - name of the environment;

¢ task_name (str)—name of the task of the environment;

e horizon (int) — the horizon;

e gamma (f1oat) — the discount factor;

* task_kwargs (dict, None)— parameters of the task;

e dt (float, 01)- duration of a control step;

e width_screen (int, 480)- width of the screen;

* height_screen (int, 480) - height of the screen;

* camera_id (int, 0)— position of camera to render the environment;

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None) - the state to set to the current state.
Returns The current state.

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) — the action to execute.

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

3.7. Environments 55

Mushroom Documentation, Release 1.2.0

stop ()
Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when
using openai-gym rendering

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters
¢ x — the variable to bound,
e min_value - the minimum value;
e max_value — the maximum value;
Returns The bounded variable.

info
An object containing the info of the environment.

Type Returns

seed (seed)
Set the seed of the environment.

Parameters seed (f1oat) - the value of the seed.

Finite MDP

class mushroom.environments.finite_mdp.FiniteMDP (p, rew, mu=None, gamma=0.9, hori-
zon=inf’)
Bases: mushroom.environments.environment.Environment

Finite Markov Decision Process.

__init__ (p, rew, mu=None, gamma=0.9, horizon=inf)
Constructor.

Parameters
* p (np.ndarray) — transition probability matrix;
* rew (np.ndarray) — reward matrix;
e mu (np.ndarray, None) - initial state probability distribution;
* gamma (float, 9)-— discount factor;
e horizon (int, np.inf) - the horizon.

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None) - the state to set to the current state.
Returns The current state.

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) — the action to execute.

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

56 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters
¢ x — the variable to bound;
* min_value — the minimum value;
* max_value - the maximum value;
Returns The bounded variable.

info
An object containing the info of the environment.

Type Returns

seed (seed)
Set the seed of the environment.

Parameters seed (float) — the value of the seed.

stop ()

Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when

using openai-gym rendering

Grid World

class mushroom.environments.grid_world.AbstractGridWorld (mdp_info, height, width,

start, goal)
Bases: mushroom.environments.environment.Environment

Abstract class to build a grid world.

__init__ (mdp_info, height, width, start, goal)
Constructor.

Parameters
* height (int) — height of the grid;
e width (int) — width of the grid;
* start (tuple)— x-y coordinates of the goal;
* goal (tuple)— x-y coordinates of the goal.

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None) - the state to set to the current state.
Returns The current state.

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) - the action to execute.

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

3.7. Environments

57

Mushroom Documentation, Release 1.2.0

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters
¢ x — the variable to bound;
* min_value — the minimum value;
* max_value - the maximum value;
Returns The bounded variable.

info
An object containing the info of the environment.

Type Returns

seed (seed)
Set the seed of the environment.

Parameters seed (float) — the value of the seed.

stop ()
Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when
using openai-gym rendering

class mushroom.environments.grid_world.GridWorld (height, width, goal, start=(0, 0))
Bases: mushroom.environments.grid world.AbstractGridiWorld

Standard grid world.

__init_ (height, width, goal, start=(0, 0))
Constructor.

Parameters
* height (int) — height of the grid;
e width (int)— width of the grid;
* start (tuple)— x-y coordinates of the goal;
* goal (tuple)—x-y coordinates of the goal.

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters
¢ x — the variable to bound;
e min_value — the minimum value;
e max_value — the maximum value;
Returns The bounded variable.

info
An object containing the info of the environment.

Type Returns

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None)— the state to set to the current state.

58 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Returns The current state.

seed (seed)
Set the seed of the environment.

Parameters seed (f1oat) - the value of the seed.

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) — the action to execute.

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

stop ()
Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when
using openai-gym rendering

class mushroom.environments.grid_world.GridWorldVanHasselt (height=3, width=3,
goal=(0, 2), start=(2,
0))
Bases: mushroom.environments.grid _world.AbstractGridWorld

A variant of the grid world as presented in: “Double Q-Learning”. Hasselt H. V.. 2010.

__init__ (height=3, width=3, goal=(0, 2), start=(2, 0))
Constructor.

Parameters
* height (int) — height of the grid;
e width (int) — width of the grid;
* start (tuple)— x-y coordinates of the goal;
* goal (tuple)— x-y coordinates of the goal.

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters
e x — the variable to bound;
e min_value — the minimum value;
* max_value — the maximum value;
Returns The bounded variable.

info
An object containing the info of the environment.

Type Returns

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None) - the state to set to the current state.
Returns The current state.

seed (seed)
Set the seed of the environment.

3.7. Environments 59

Mushroom Documentation, Release 1.2.0

Parameters seed (float) — the value of the seed.

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) - the action to execute.

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

stop ()
Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when
using openai-gym rendering

Gym
class mushroom.environments.gym_env.Gym (name, horizon, gamma)
Bases: mushroom.environments.environment.Environment

Interface for OpenAl Gym environments. It makes it possible to use every Gym environment just providing the
id, except for the Atari games that are managed in a separate class.

__init__ (name, horizon, gamma)
Constructor.

Parameters
* name (str) - gym id of the environment;
e horizon (int) — the horizon,;
e gamma (f1oat) — the discount factor.

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None) - the state to set to the current state.
Returns The current state.

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) - the action to execute.

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

stop ()
Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when
using openai-gym rendering

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters
¢ x — the variable to bound;
e min_value — the minimum value;

e max_value — the maximum value;

60 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Returns The bounded variable.

info
An object containing the info of the environment.

Type Returns

seed (seed)
Set the seed of the environment.

Parameters seed (f1oat) — the value of the seed.

Inverted pendulum

class mushroom.environments.inverted_pendulum.InvertedPendulum (random_start=False,
m=1.0,
[=1.0, g=93,
mu=0.01,
max_u=5.0,
horizon=5000,

gamma=0.99)
Bases: mushroom.environments.environment .Environment

The Inverted Pendulum environment (continuous version) as presented in: “Reinforcement Learning In Contin-
uous Time and Space”. Doya K.. 2000. “Off-Policy Actor-Critic”. Degris T. et al.. 2012. “Deterministic Policy
Gradient Algorithms”. Silver D. et al. 2014.

__init__ (random_start=False, m=1.0, [=1.0, g=9.8, mu=0.01, max_u=5.0, horizon=5000,

gamma=0.99)
Constructor.

Parameters

* random_start (bool, False)— whether to start from a random position or from
the horizontal one;

e m(float, 1.0)-mass ofthe pendulum;

e 1(float, 1.0)-length of the pendulum;

* g(float, 9.8)- gravity acceleration constant;

e mu (float, le-2)-friction constant of the pendulum;
* max_u (float, 5.0)— maximum allowed input torque;
* horizon (int, 5000) - horizon of the problem;

e gamma (int, 99)— discount factor.

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None) - the state to set to the current state.
Returns The current state.

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) — the action to execute.

3.7. Environments 61

Mushroom Documentation, Release 1.2.0

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

stop ()
Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when
using openai-gym rendering

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters
¢ x — the variable to bound;
e min_value - the minimum value;
e max_value — the maximum value;
Returns The bounded variable.

info
An object containing the info of the environment.

Type Returns

seed (seed)
Set the seed of the environment.

Parameters seed (f1oat) — the value of the seed.

Cart Pole

class mushroom.environments.cart_pole.CartPole (m=2.0, M=8.0, [=0.5, g=9.8, mu=0.01,
max_u=50.0, noise_u=10.0, hori-

zon=3000, gamma=0.95)
Bases: mushroom.environments.environment .Environment

The Inverted Pendulum on a Cart environment as presented in: “Least-Squares Policy Iteration”. Lagoudakis
M. G. and Parr R.. 2003.

__init__ (m=2.0, M=8.0, [=0.5, g=9.8, mu=0.01, max_u=50.0, noise_u=10.0, horizon=3000,
gamma=0.95)
Constructor.

Parameters
*m(float, Z2.0)-massof the pendulum;
e M(float, &.0)-mass of the cart;
* 1 (float, b5)-length of the pendulum;
e g(float, 9.8)- gravity acceleration constant;
* mu(float, Ile-2)-friction constant of the pendulum;
* max_u(float, 50.)- maximum allowed input torque;
* noise_u (float, 10.)- maximum noise on the action;
* horizon (int, 3000) - horizon of the problem;

e gamma (int, 95)— discount factor.

62 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None) - the state to set to the current state.
Returns The current state.

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) — the action to execute.

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

stop ()
Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when

using openai-gym rendering

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters
¢ x — the variable to bound;
* min_value — the minimum value;
* max_value — the maximum value;
Returns The bounded variable.

info
An object containing the info of the environment.

Type Returns

seed (seed)
Set the seed of the environment.

Parameters seed (float) — the value of the seed.

LQR

class mushroom.environments.lgr.LQR (A, B, Q, R, max_pos=inf, max_action=inf, ran-
dom_init=False, episodic=False, gamma=0.9, hori-

zon=50)
Bases: mushroom.environments.environment .Environment

This class implements a Linear-Quadratic Regulator. This task aims to minimize the undesired deviations from
nominal values of some controller settings in control problems. The system equations in this task are:

Ti4+1 = A.’Et + But

where x is the state and u is the control signal.

The reward function is given by:
ry = — (xtTth + utTRut)

“Policy gradient approaches for multi-objective sequential decision making”. Parisi S., Pirotta M., Smacchia
N., Bascetta L., Restelli M.. 2014

3.7. Environments 63

Mushroom Documentation, Release 1.2.0

__init__ (A, B, Q, R, max_pos=inf, max_action=inf, random_init=False, episodic=False, gamma=0.9,

horizon=50)
Constructor.

Args: A (np.ndarray): the state dynamics matrix; B (np.ndarray): the action dynamics matrix;
Q (np.ndarray): reward weight matrix for state; R (np.ndarray): reward weight matrix for
action; max_pos (float, np.inf): maximum value of the state; max_action (float, np.inf):
maximum value of the action; random_init (bool, False): start from a random state; episodic
(bool, False): end the episode when the state goes over the threshold; gamma (float, 0.9):
discount factor; horizon (int, 50): horizon of the mdp.

static generate (dimensions, max_pos=inf, max_action=inf, eps=0.1, index=0, ran-

dom_init=False, episodic=False, gamma=0.9, horizon=50)
Factory method that generates an 1qr with identity dynamics and symmetric reward matrices.

Parameters
¢ dimensions (int)— number of state-action dimensions;
* max_pos (float, np.inf)-—maximum value of the state;
e max_action (float, np.inf)-maximum value of the action;
* eps (double, 1)-reward matrix weights specifier;
e index (int, 0)- selector for the principal state;
e random_init (bool, False) - start from a random state;
* episodic (bool, False)-end the episode when the state goes over the threshold;
e gamma (float, 9)- discount factor;
* horizon (int, 50)- horizon of the mdp.

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None) - the state to set to the current state.
Returns The current state.

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) — the action to execute.

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters
¢ x — the variable to bound;
* min_value — the minimum value;
* max_value — the maximum value;
Returns The bounded variable.

info
An object containing the info of the environment.

64 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Type Returns

seed (seed)

Set the seed of the environment.

Parameters seed (f1oat) - the value of the seed.

stop ()

Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when
using openai-gym rendering

Mujoco

class mushroom.environments.mujoco.ObservationType
Bases: enum.Enum

An enum indicating the type of data that should be added to the observation of the environment, can be Joint-
/Body-/Site- positions and velocities.

class mushroom.environments.mujoco.MuJoCo (file_name, actuation_spec, ob-
servation_spec, gamma, horizon,
n_substeps=1, n_intermediate_steps=1,
additional_data_spec=None, colli-

sion_groups=None)

Bases: mushroom.environments.environment.Environment

Class to create a Mushroom environment using the MuJoCo simulator.

init__ (file_name, actuation_spec, observation_spec, gamma, horizon, n_substeps=1,

n_intermediate_steps=1, additional_data_spec=None, collision_groups=None)
Constructor.

Parameters

file_name (string)— The path to the XML file with which the environment should
be created;

actuation_spec (1ist)— A list specifying the names of the joints which should be
controllable by the agent. Can be left empty when all actuators should be used;

observation_spec (1ist)— A list containing the names of data that should be made
available to the agent as an observation and their type (ObservationType). An entry in the
list is given by: (name, type);

gamma (f1oat) — The discounting factor of the environment;
horizon (int) - The maximum horizon for the environment;

n_substeps (int) — The number of substeps to use by the MuJoCo simulator. An
action given by the agent will be applied for n_substeps before the agent receives the next
observation and can act accordingly;

n_intermediate_steps (int) — The number of steps between every action taken
by the agent. Similar to n_substeps but allows the user to modify, control and access
intermediate states.

additional_data_spec (1ist)— A list containing the data fields of interest, which
should be read from or written to during simulation. The entries are given as the follow-
ing tuples: (key, name, type) key is a string for later referencing in the “read_data” and
“write_data” methods. The name is the name of the object in the XML specification and
the type is the ObservationType;

3.7. Environments

65

Mushroom Documentation, Release 1.2.0

* collision_groups (1ist) — A list containing groups of geoms for which colli-
sions should be checked during simulation via check_collision. The entries are
given as: (key, geom_names), where key is a string for later referencing in the
“check_collision” method, and geom_names is a list of geom names in the XML spec-
ification.

seed (seed)
Set the seed of the environment.

Parameters seed (f1oat) — the value of the seed.

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None) - the state to set to the current state.
Returns The current state.

stop ()

Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when

using openai-gym rendering

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) — the action to execute.

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

_preprocess_action (action)
Compute a transformation of the action provided to the environment.

Parameters action (np.ndarray)— numpy array with the actions provided to the environ-
ment.

Returns The action to be used for the current step

_step_init (state, action)
Allows information to be initialized at the start of a step.

_compute_action (action)

Compute a transformation of the action at every intermediate step. Useful to add control signals simulated

directly in python.
Parameters action (np.ndarray)—numpy array with the actions provided at every step.
Returns The action to be set in the actual mujoco simulation.

_simulation_pre_step ()

Allows information to be accesed and changed at every intermediate step before taking a step in the

mujoco simulation. Can be usefull to apply an external force/torque to the specified bodies.

ex: apply a force over X to the torso: force = [200, 0, 0] torque =[O, 0,
self.sim.data.xfrc_applied[self.sim.model._body_name2id[“torso”],:] = force + torque

_simulation_post_step ()

Allows information to be accesed at every intermediate step after taking a step in the mujoco simula-

tion. Can be usefull to average forces over all intermediate steps.

_step_finalize()
Allows information to be accesed at the end of a step.

66

Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

read_data (name)
Read data form the MuJoCo data structure.

Parameters name (string)— A name referring to an entry contained the additional_data_spec
list handed to the constructor.

Returns The desired data as a one-dimensional numpy array.

write_data (name, value)
Write data to the MuJoCo data structure.

Parameters

* name (string)— A name referring to an entry contained in the additional_data_spec list
handed to the constructor;

* value (ndarray) — The data that should be written.

check_collision (groupl, group2)
Check for collision between the specified groups.

Parameters

* groupl (string)— A name referring to an entry contained in the collision_groups list
handed to the constructor;

e group2 (string)— A name referring to an entry contained in the collision_groups list
handed to the constructor.

Returns A flag indicating whether a collision occurred between the given groups or not.

get_collision_force (groupl, group2)
Returns the collision force and torques between the specified groups.

Parameters

* groupl (string)— A name referring to an entry contained in the collision_groups list
handed to the constructor;

e group2 (string)— A name referring to an entry contained in the collision_groups list
handed to the constructor.

Returns A 6D vector specifying the collision forces/torques[3D force + 3D torque] between
the given groups. Vector of 0’s in case there was no collision. http://mujoco.org/book/
programming.html#siContact

reward (state, action, next_state)
Compute the reward based on the given transition.

Parameters

* state (np.array) — the current state of the system;

* action (np.array) — the action that is applied in the current state;

* next_state (np.array) — the state reached after applying the given action.
Returns The reward as a floating point scalar value.

is_absorbing (state)
Check whether the given state is an absorbing state or not.

Parameters state (np.array) — the state of the system.

Returns A boolean flag indicating whether this state is absorbing or not.

3.7.

Environments 67

http://mujoco.org/book/programming.html#siContact
http://mujoco.org/book/programming.html#siContact

Mushroom Documentation, Release 1.2.0

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters
¢ x — the variable to bound;
* min_value — the minimum value;
* max_value - the maximum value;
Returns The bounded variable.

info
An object containing the info of the environment.

Type Returns

setup ()
A function that allows to execute setup code after an environment reset.

Puddle World

class mushroom.environments.puddle_world.PuddleWorld (start=None, goal=None,
goal_threshold=0.1,
noise_step=0.025,
noise_reward=0, re-
ward_goal=0.0, thrust=0.05,
puddle_center=None,
puddle_width=None,
gamma=0.99, horizon=5000)

Bases: mushroom.environments.environment.Environment
Puddle world as presented in: “Off-Policy Actor-Critic”. Degris T. et al.. 2012.

__init__ (start=None, goal=None, goal_threshold=0.1, noise_step=0.025, noise_reward=0, re-
ward_goal=0.0, thrust=0.05, puddle_center=None, puddle_width=None, gamma=0.99,

horizon=5000)
Constructor.

Parameters
e start (np.array, None) - starting position of the agent;
e goal (np.array, None)-— goal position;

* goal_threshold (float, 1I1)-distance threshold of the agent from the goal to con-
sider it reached;

* noise_step (float, 025)-noise in actions;

* noise_reward (float, 0)- standard deviation of gaussian noise in reward;
* reward_goal (float, 0)-reward obtained reaching goal state;

* thrust (float, 05)- distance walked during each action;

* puddle_center (np.array, None)- center of the puddle;

e puddle_width (np.array, None)-— width of the puddle;

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None) - the state to set to the current state.

68 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Returns The current state.

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) - the action to execute.

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

stop ()

Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when
using openai-gym rendering

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters
* x — the variable to bound;
e min_value - the minimum value;
e max_value — the maximum value;
Returns The bounded variable.

info
An object containing the info of the environment.

Type Returns

seed (seed)
Set the seed of the environment.

Parameters seed (f1oat) — the value of the seed.

Segway
class mushroom.environments.segway .Segway (random_start=False)
Bases: mushroom.environments.environment.Environment

The Segway environment (continuous version) as presented in: “Deep Learning for Actor-Critic Reinforcement
Learning”. Xueli Jia. 2015.

__init__ (random_start=Fualse)
Constructor.

Parameters random_start (bool, False)— whether to start from a random position or
from the horizontal one.

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None) - the state to set to the current state.
Returns The current state.

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) — the action to execute.

3.7. Environments 69

Mushroom Documentation, Release 1.2.0

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters
¢ x — the variable to bound,
e min_value - the minimum value;
e max_value — the maximum value;
Returns The bounded variable.

info
An object containing the info of the environment.

Type Returns

seed (seed)
Set the seed of the environment.

Parameters seed (f1oat) - the value of the seed.

stop ()
Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when
using openai-gym rendering

Ship steering

class mushroom.environments.ship_steering.ShipSteering (small=True,

n_steps_action=3)
Bases: mushroom.environments.environment .Environment

The Ship Steering environment as presented in: “Hierarchical Policy Gradient Algorithms”. Ghavamzadeh M.
and Mahadevan S.. 2013.

__init__ (small=True, n_steps_action=3)
Constructor.

Parameters
e small (bool, True)-— whether to use a small state space or not.
* n_steps_action(int, 3)—number ofintegration intervals for each step of the mdp.

reset (state=None)
Reset the current state.

Parameters state (np.ndarray, None) - the state to set to the current state.
Returns The current state.

step (action)
Move the agent from its current state according to the action.

Parameters action (np.ndarray) — the action to execute.

Returns The state reached by the agent executing action in its current state, the reward ob-
tained in the transition and a flag to signal if the next state is absorbing. Also an additional
dictionary is returned (possibly empty).

70 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

stop ()
Method used to stop an mdp. Useful when dealing with real world environments, simulators, or when
using openai-gym rendering

static _bound (x, min_value, max_value)
Method used to bound state and action variables.

Parameters
¢ x — the variable to bound,
e min_value - the minimum value;
e max_value — the maximum value;
Returns The bounded variable.

info
An object containing the info of the environment.

Type Returns

seed (seed)
Set the seed of the environment.

Parameters seed (f1oat) - the value of the seed.

3.7.2 Generators

Grid world

mushroom.environments.generators.grid_world.generate_grid_world (grid, prob,
pos_rew,
neg_rew,

gamma=0.9,

horizon=100)
This Grid World generator requires a .txt file to specify the shape of the grid world and the cells. There are five

types of cells: ‘S’ is the starting position where the agent is; ‘G’ is the goal state; ‘.’ is a normal cell; ‘*’ is
a hole, when the agent steps on a hole, it receives a negative reward and the episode ends; ‘#’ is a wall, when
the agent is supposed to step on a wall, it actually remains in its current state. The initial states distribution is
uniform among all the initial states provided.

The grid is expected to be rectangular.

Parameters
* grid (str) - the path of the file containing the grid structure;
* prob (float) — probability of success of an action;
* pos_rew (float)—reward obtained in goal states;
* neg_rew (float)—reward obtained in “hole” states;
* gamma (float, 9)- discount factor;
e horizon (int, 100) - the horizon.

Returns A FiniteMDP object built with the provided parameters.

mushroom.environments.generators.grid_world.parse_grid (grid)
Parse the grid file:

Parameters grid (str) — the path of the file containing the grid structure;

3.7. Environments 71

Mushroom Documentation, Release 1.2.0

Returns A list containing the grid structure.

mushroom.environments.generators.grid_world.compute_probabilities (grid_map,
cell_list,

prob)
Compute the transition probability matrix.

Parameters
* grid map (11ist) - list containing the grid structure;
e cell_list (1ist)- listof non-wall cells;
* prob (float) — probability of success of an action.
Returns The transition probability matrix;

mushroom.environments.generators.grid_world.compute_reward (grid _map, cell_list,

pos_rew, neg_rew)
Compute the reward matrix.

Parameters
* grid map (11ist) - list containing the grid structure;
e cell_ list (I1ist)-— list of non-wall cells;
* pos_rew (float)—reward obtained in goal states;
* neg_rew (float)—reward obtained in “hole” states;
Returns The reward matrix.

mushroom.environments.generators.grid_world.compute_mu (grid_map, cell_list)
Compute the initial states distribution.

Parameters
* grid_map (1ist) - list containing the grid structure;
e cell_ list (I1ist)-— list of non-wall cells.

Returns The initial states distribution.

Simple chain

mushroom.environments.generators.simple_chain.generate_simple_chain (state_n,
goal_states,
prob,
rew,
mu=None,
gamma=0.9,
hori-
zon=100)

Simple chain generator.
Parameters
e state_n (int) - number of states;
* goal_states (1ist) - list of goal states;

* prob (float) — probability of success of an action;

* rew (float) —reward obtained in goal states;

72 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

* mu (np.ndarray) — initial state probability distribution;
* gamma (float, 9)-— discount factor;
e horizon (int, 100)- the horizon.

Returns A FiniteMDP object built with the provided parameters.

mushroom.environments.generators.simple_chain.compute_probabilities (state_n,

prob)
Compute the transition probability matrix.

Parameters

e state_n (int) - number of states;

* prob (float) — probability of success of an action.
Returns The transition probability matrix;

mushroom.environments.generators.simple_chain.compute_reward (state_n,

goal_states, rew)
Compute the reward matrix.

Parameters
e state_n (int) - number of states;
* goal_states (1ist) - list of goal states;
* rew (float)-reward obtained in goal states.

Returns The reward matrix.

Taxi

mushroom.environments.generators.taxi.generate_taxi (grid, prob=0.9, rew=(0, 1, 3, 15),

gamma=0.99, horizon=inf')
This Taxi generator requires a .txt file to specify the shape of the grid world and the cells. There are five types

of cells: ‘S’ is the starting where the agent is; ‘G’ is the goal state; °.” is a normal cell; ‘F’ is a passenger, when
the agent steps on a hole, it picks up it. ‘#’ is a wall, when the agent is supposed to step on a wall, it actually
remains in its current state. The initial states distribution is uniform among all the initial states provided. The
episode terminates when the agent reaches the goal state. The reward is always 0, except for the goal state where
it depends on the number of collected passengers. Each action has a certain probability of success and, if it fails,
the agent goes in a perpendicular direction from the supposed one.

The grid is expected to be rectangular.
This problem is inspired from: “Bayesian Q-Learning”. Dearden R. et al.. 1998.
Parameters
* grid (str) — the path of the file containing the grid structure;
* prob (float, 9)— probability of success of an action;
* rew (tuple, (0, 1, 3, 15))-rewards obtained in goal states;
e gamma (float, 99)- discount factor;
* horizon (int, np.inf) - the horizon.
Returns A FiniteMDP object built with the provided parameters.

mushroom.environments.generators.taxi.parse_grid (grid)
Parse the grid file:

3.7. Environments 73

Mushroom Documentation, Release 1.2.0

Parameters grid (st r) — the path of the file containing the grid structure.
Returns A list containing the grid structure.

mushroom.environments.generators.taxi.compute_probabilities (grid_map, cell_list,
passenger_list,
prob)
Compute the transition probability matrix.

Parameters
* grid_map (1ist) - list containing the grid structure;
e cell_ list (1ist)- list of non-wall cells;
* passenger_list (1ist) - list of passenger cells;
* prob (float) — probability of success of an action.
Returns The transition probability matrix;

mushroom.environments.generators.taxi.compute_reward (grid_map, cell_list, passen-
ger_list, rew)
Compute the reward matrix.

Parameters
* grid_map (11ist) - list containing the grid structure;
e cell_ list (I1ist) - list of non-wall cells;
* passenger_list (1ist) - list of passenger cells;
* rew (tuple) —rewards obtained in goal states.
Returns The reward matrix.

mushroom.environments.generators.taxi.compute_mu (grid_map, cell_list, passenger_list)
Compute the initial states distribution.

Parameters
* grid_map (11ist) - list containing the grid structure;
e cell list (I1ist) - list of non-wall cells;
* passenger_list (1ist) - listof passenger cells.

Returns The initial states distribution.

3.8 Features

The features in Mushroom are 1-D arrays computed applying a specified function to a raw input, e.g. polynomial
features of the state of an MDP. Mushroom supports three types of features:

* basis functions;
¢ tensor basis functions;
e tiles.

The tensor basis functions are a PyTorch implementation of the standard basis functions. They are less straightforward
than the standard ones, but they are faster to compute as they can exploit parallel computing, e.g. GPU-acceleration
and multi-core systems.

All the types of features are exposed by a single factory method Features that builds the one requested by the user.

74 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

mushroom. features. features.Features (basis_list=None, tilings=None, tensor_list=None,

n_outputs=None, function=None, device=None)
Factory method to build the requested type of features. The types are mutually exclusive.

Possible features are tilings (t 11ings), basis functions (basis_1ist), tensor basis (tensor_list), and
functional mappings (n_outputs and function).

The difference between basis_list and tensor_list is that the former is a list of python classes each
one evaluating a single element of the feature vector, while the latter consists in a list of PyTorch modules that
can be used to build a PyTorch network. The use of tensor_1list is a faster way to compute features than
basis_list and is suggested when the computation of the requested features is slow (see the Gaussian radial
basis function implementation as an example). A functional mapping applies a function to the input computing
an n_outputs-dimensional vector, where the mapping is expressed by function. If function is not
provided, the identity is used.

Parameters
e basis_list (1ist, None) - list of basis functions;
* tilings ([object, list], None)- single object or list of tilings;

* tensor_1list (1ist, None) — list of dictionaries containing the instructions to build
the requested tensors;

* n_outputs (int, None)- dimensionality of the feature mapping;

* function (object, None) - a callable function to be used as feature mapping. Only
needed when using a functional mapping.

* device (int, None)- where to run the group of tensors. Only needed when using a list
of tensors.

Returns The class implementing the requested type of features.

mushroom. features.features.get_action_features (phi_state, action, n_actions)
Compute an array of size len (phi_state) * n_actions filled with zeros, except for elements from
len (phi_state) * actionto len (phi_state) * (action + 1) that are filled with phi_state. This is
used to compute state-action features.

Parameters
* phi_state (np.ndarray) — the feature of the state;
* action (np.ndarray) - the action whose features have to be computed;
* n_actions (int) - the number of actions.
Returns The state-action features.
The factory method returns a class that extends the abstract class FeatureImplementation.

The documentation for every feature type can be found here:

3.8.1 Basis
Fourier

class mushroom.features.basis.fourier.FourierBasis (low, delta, c, dimensions=None)
Bases: object

Class implementing Fourier basis functions. The value of the feature is computed using the formula:

Zcos (X —m)/Ac

3.8. Features 75

Mushroom Documentation, Release 1.2.0

where X is the input, m is the vector of the minumum input values (for each dimensions) , Delta is the vector of

maximum
__init__ (low, delta, c, dimensions=None)
Constructor.
Parameters
e low (np.ndarray) — vector of minimum values of the input variables;
* delta (np.ndarray) — vector of the maximum difference between two values of the
input variables, i.e. delta = high - low;
* ¢ (np.ndarray) — vector of weights for the state variables;
* dimensions (1ist, None) - list of the dimensions of the input to be considered by
the feature.
__call_ (x)

Call self as a function.

static generate (low, high, n, dimensions=None)
Factory method to build a set of fourier basis.

Parameters
* low (np.ndarray) — vector of minimum values of the input variables;
* high (np.ndarray) — vector of maximum values of the input variables;
* n (int)— number of harmonics to consider for each state variable

* dimensions (1ist, None) - list of the dimensions of the input to be considered by
the features.

Returns The list of the generated fourier basis functions.

Gaussian RBF

class mushroom. features.basis.gaussian_rbf.GaussianRBF (mean, scale, dimen-

sions=None)
Bases: object

Class implementing Gaussian radial basis functions. The value of the feature is computed using the formula:
Z (Xi — ma)?

o
where X is the input, mu is the mean vector and sigma is the scale parameter vector.

__init_ (mean, scale, dimensions=None)
Constructor.

Parameters
* mean (np.ndarray) — the mean vector of the feature;
e scale (np.ndarray) — the scale vector of the feature;

* dimensions (1ist, None) — list of the dimensions of the input to be considered
by the feature. The number of dimensions must match the dimensionality of mean and
scale.

__call (x)
Call self as a function.

76 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

static generate (n_centers, low, high, dimensions=None)
Factory method to build uniformly spaced gaussian radial basis functions with a 25% overlap.

Parameters

* n_centers (1ist) — list of the number of radial basis functions to be used for each
dimension.

e low (np.ndarray) — lowest value for each dimension;
* high (np.ndarray) — highest value for each dimension;

* dimensions (list, None) — list of the dimensions of the input to be considered
by the feature. The number of dimensions must match the number of elements in
n_centers and low.

Returns The list of the generated radial basis functions.

Polynomial

class mushroom. features.basis.polynomial .PolynomialBasis (dimensions=None,

degrees=None)
Bases: object

Class implementing polynomial basis functions. The value of the feature is computed using the formula:

T

where X is the input and d is the vector of the exponents of the polynomial.

__init__ (dimensions=None, degrees=None)
Constructor. If both parameters are None, the constant feature is built.

Parameters

* dimensions (1ist, None) — list of the dimensions of the input to be considered by
the feature;

* degrees (1ist, None) — list of the degrees of each dimension to be considered by
the feature. It must match the number of elements of dimensions.

__call (x)
Call self as a function.

static _compute_exponents (order, n_variables)
Find the exponents of a multivariate polynomial expression of order order and n_variables number
of variables.

Parameters

* order (int) — the maximum order of the polynomial;

* n_variables (int) — the number of elements of the input vector.
Yields The current exponent of the polynomial.

static generate (max_degree, input_size)
Factory method to build a polynomial of order max_degree based on the first input_size dimensions
of the input.

Parameters

* max_degree (int) - maximum degree of the polynomial;

3.8. Features 77

Mushroom Documentation, Release 1.2.0

* input_size (int) - size of the input.

Returns The list of the generated polynomial basis functions.

3.8.2 Tensors

Gaussian tensor

class mushroom. features.tensors.gaussian_tensor.PyTorchGaussianRBF (mu, scale,
dim)
Bases: sphinx.ext.autodoc.importer._MockObject
Pytorch module to implement a gaussian radial basis function.

__init_ (mu, scale, dim)
Initialize self. See help(type(self)) for accurate signature.

static generate (n_centers, low, high, dimensions=None)
Factory method that generates the list of dictionaries to build the tensors representing a set of uniformly
spaced Gaussian radial basis functions with a 25% overlap.

Parameters

* n_centers (1ist) — list of the number of radial basis functions to be used for each
dimension,;

e low (np.ndarray) — lowest value for each dimension;
* high (np.ndarray) - highest value for each dimension;

* dimensions (list, None) — list of the dimensions of the input to be considered
by the feature. The number of dimensions must match the number of elements in
n_centers and low.

Returns The list of dictionaries as described above.

3.8.3 Tiles

class mushroom. features.tiles.tiles.Tiles (x_range, n_tiles, state_components=None)
Bases: object

Class implementing rectangular tiling. For each point in the state space, this class can be used to compute the
index of the corresponding tile.

__init__ (x_range, n_tiles, state_components=None)
Constructor.

Parameters
* x_range (11ist) - list of two-elements lists specifying the range of each state variable;
e n_tiles (1ist) - list of the number of tiles to be used for each dimension.

* state_components (1ist, None) - list of the dimensions of the input to be con-
sidered by the tiling. The number of elements must match the number of elements in
x_range and n_tiles.

__call_ (x)
Call self as a function.

78 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

static generate (n_tilings, n_tiles, low, high, uniform="False)
Factory method to build n_tilings tilings of n_tiles tiles with a range between 1ow and high for
each dimension.

Parameters
* n_tilings (int)— number of tilings;
* n_tiles (1ist)-number of tiles for each tilings for each dimension;
* low (np.ndarray) — lowest value for each dimension;
* high (np.ndarray) — highest value for each dimension.

* uniform(bool, False)-if True the displacement for each tiling will be w/n_tilings,
where w is the tile width. Otherwise, the displacement will be k*w/n_tilings, where
k=2i+1, where i is the dimension index.

Returns The list of the generated tiles.

3.9 Policy

class mushroom.policy.policy.Policy
Bases: object

Interface representing a generic policy. A policy is a probability distribution that gives the probability of taking
an action given a specified state. A policy is used by mushroom agents to interact with the environment.

__call__ (*args)
Compute the probability of taking action in a certain state following the policy.

Parameters xargs (1ist) — list containing a state or a state and an action.

Returns The probability of all actions following the policy in the given state if the list contains
only the state, else the probability of the given action in the given state following the policy.
If the action space is continuous, state and action must be provided

draw_action (state)
Sample an action in state using the policy.

Parameters state (np.ndarray) — the state where the agent is.
Returns The action sampled from the policy.

reset ()

Useful when the policy needs a special initialization at the beginning of an episode.
__init_

Initialize self. See help(type(self)) for accurate signature.

class mushroom.policy.policy.ParametricPolicy
Bases: mushroom.policy.policy.Policy

Interface for a generic parametric policy. A parametric policy is a policy that depends on set of parameters, called
the policy weights. If the policy is differentiable, the derivative of the probability for a specified state-action pair
can be provided.

diff log (state, action)
Compute the gradient of the logarithm of the probability density function, in the specified state and action
pair, i.e.:

Vo logp(s,a)

3.9. Policy 79

Mushroom Documentation, Release 1.2.0

Parameters

* state (np.ndarray) — the state where the gradient is computed

* action (np.ndarray) — the action where the gradient is computed
Returns The gradient of the logarithm of the pdf w.r.t. the policy weights

diff (state, action)
Compute the derivative of the probability density function, in the specified state and action pair. Normally
it is computed w.r.t. the derivative of the logarithm of the probability density function, exploiting the
likelihood ratio trick, i.e.:

Vop(s,a) = p(s,a)Vglogp(s, a)

Parameters

* state (np.ndarray) — the state where the derivative is computed

* action (np.ndarray) — the action where the derivative is computed
Returns The derivative w.r.t. the policy weights

set_weights (weights)
Setter.

Parameters weights (np.ndarray)—the vector of the new weights to be used by the policy.

get_weights ()
Getter.

Returns The current policy weights.

weights_size
Property.

Returns The size of the policy weights.

__call__ (*args)
Compute the probability of taking action in a certain state following the policy.

Parameters xargs (1ist) - list containing a state or a state and an action.

Returns The probability of all actions following the policy in the given state if the list contains
only the state, else the probability of the given action in the given state following the policy.
If the action space is continuous, state and action must be provided

__init_
Initialize self. See help(type(self)) for accurate signature.

draw_action (state)
Sample an action in state using the policy.

Parameters state (np.ndarray) — the state where the agent is.
Returns The action sampled from the policy.

reset ()
Useful when the policy needs a special initialization at the beginning of an episode.

3.9.1 Deterministic policy

class mushroom.policy.deterministic_policy.DeterministicPolicy (mu)
Bases: mushroom.policy.policy.ParametricPolicy

80 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Simple parametric policy representing a deterministic policy. As deterministic policies are degenerate probabil-
ity functions where all the probability mass is on the deterministic action,they are not differentiable, even if the
mean value approximator is differentiable.

__init_ (mu)
Constructor.

Parameters mu (Regressor) — the regressor representing the action to select in each state.

get_regressor ()
Getter.

Returns the regressor that is used to map state to actions.

__call__ (state, action)
Compute the probability of taking action in a certain state following the policy.

Parameters xargs (11ist)— list containing a state or a state and an action.

Returns The probability of all actions following the policy in the given state if the list contains
only the state, else the probability of the given action in the given state following the policy.
If the action space is continuous, state and action must be provided

draw_action (state)
Sample an action in state using the policy.

Parameters state (np.ndarray) — the state where the agent is.
Returns The action sampled from the policy.

set_weights (weights)
Setter.

Parameters weights (np.ndarray)—the vector of the new weights to be used by the policy.

get_weights ()
Getter.

Returns The current policy weights.

weights_size
Property.

Returns The size of the policy weights.

dif £ (state, action)
Compute the derivative of the probability density function, in the specified state and action pair. Normally
it is computed w.r.t. the derivative of the logarithm of the probability density function, exploiting the
likelihood ratio trick, i.e.:

Vop(s,a) = p(s,a)Vglogp(s, a)
Parameters
* state (np.ndarray) — the state where the derivative is computed
* action (np.ndarray) — the action where the derivative is computed

Returns The derivative w.r.t. the policy weights

diff log (state, action)
Compute the gradient of the logarithm of the probability density function, in the specified state and action
pair, i.e.:

Vo logp(s, a)

3.9.

Policy 81

Mushroom Documentation, Release 1.2.0

Parameters

* state (np.ndarray) — the state where the gradient is computed

* action (np.ndarray) — the action where the gradient is computed
Returns The gradient of the logarithm of the pdf w.r.t. the policy weights

reset ()
Useful when the policy needs a special initialization at the beginning of an episode.

3.9.2 Gaussian policy
class mushroom.policy.gaussian_policy.GaussianPolicy (mu, sigma)
Bases: mushroom.policy.policy.ParametricPolicy

Gaussian policy. This is a differentiable policy for continuous action spaces. The policy samples an action in
every state following a gaussian distribution, where the mean is computed in the state and the covariance matrix
is fixed.

__init___ (mu, sigma)
Constructor.

Parameters
* mu (Regressor) — the regressor representing the mean w.r.t. the state;

* sigma (np.ndarray) — a square positive definite matrix representing the covariance
matrix. The size of this matrix must be n x n, where n is the action dimensionality.

set_sigma (sigma)
Setter.

Parameters sigma (np.ndarray) — the new covariance matrix. Must be a square positive
definite matrix.

__call__ (state, action)
Compute the probability of taking action in a certain state following the policy.

Parameters xargs (1ist)— list containing a state or a state and an action.

Returns The probability of all actions following the policy in the given state if the list contains
only the state, else the probability of the given action in the given state following the policy.
If the action space is continuous, state and action must be provided

draw_action (state)
Sample an action in state using the policy.

Parameters state (np.ndarray) — the state where the agent is.
Returns The action sampled from the policy.

diff log (state, action)
Compute the gradient of the logarithm of the probability density function, in the specified state and action
pair, i.e.:

Vo logp(s,a)

Parameters
* state (np.ndarray) — the state where the gradient is computed

* action (np.ndarray) — the action where the gradient is computed

82 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Returns The gradient of the logarithm of the pdf w.r.t. the policy weights

set_weights (weights)
Setter.

Parameters weights (np.ndarray) - the vector of the new weights to be used by the policy.

get_weights ()
Getter.

Returns The current policy weights.

weights_size
Property.

Returns The size of the policy weights.

diff (state, action)
Compute the derivative of the probability density function, in the specified state and action pair. Normally
it is computed w.r.t. the derivative of the logarithm of the probability density function, exploiting the
likelihood ratio trick, i.e.:
Vop(s,a) = p(s,a)Vglogp(s,a)
Parameters
* state (np.ndarray) — the state where the derivative is computed
* action (np.ndarray) — the action where the derivative is computed

Returns The derivative w.r.t. the policy weights

reset ()
Useful when the policy needs a special initialization at the beginning of an episode.

class mushroom.policy.gaussian_policy.DiagonalGaussianPolicy (mu, std)
Bases: mushroom.policy.policy.ParametricPolicy

Gaussian policy with learnable standard deviation. The Covariance matrix is constrained to be a diagonal matrix,
where the diagonal is the squared standard deviation vector. This is a differentiable policy for continuous action
spaces. This policy is similar to the gaussian policy, but the weights includes also the standard deviation.

__init__ (mu, std)
Constructor.

Parameters
* mu (Regressor) — the regressor representing the mean w.r.t. the state;

* std (np.ndarray) — a vector of standard deviations. The length of this vector must be
equal to the action dimensionality.

set_std (std)
Setter.

Parameters std (np.ndarray) — the new standard deviation. Must be a square positive
definite matrix.

__ecall__ (state, action)
Compute the probability of taking action in a certain state following the policy.

Parameters *args (1ist) — list containing a state or a state and an action.

Returns The probability of all actions following the policy in the given state if the list contains
only the state, else the probability of the given action in the given state following the policy.
If the action space is continuous, state and action must be provided

3.9. Policy 83

Mushroom Documentation, Release 1.2.0

draw_action (state)
Sample an action in state using the policy.

Parameters state (np.ndarray) — the state where the agent is.
Returns The action sampled from the policy.

diff_ log (state, action)
Compute the gradient of the logarithm of the probability density function, in the specified state and action
pair, i.e.:

Vi logp(s,a)

Parameters

* state (np.ndarray) — the state where the gradient is computed

* action (np.ndarray) — the action where the gradient is computed
Returns The gradient of the logarithm of the pdf w.r.t. the policy weights

set_weights (weights)
Setter.

Parameters weights (np.ndarray)—the vector of the new weights to be used by the policy.

get_weights ()
Getter.

Returns The current policy weights.

weights_size
Property.

Returns The size of the policy weights.

diff (state, action)
Compute the derivative of the probability density function, in the specified state and action pair. Normally
it is computed w.r.t. the derivative of the logarithm of the probability density function, exploiting the
likelihood ratio trick, i.e.:

Vep(s,a) = p(s,a)Velogp(s, a)

Parameters

* state (np.ndarray) — the state where the derivative is computed

* action (np.ndarray) — the action where the derivative is computed
Returns The derivative w.r.t. the policy weights

reset ()
Useful when the policy needs a special initialization at the beginning of an episode.

class mushroom.policy.gaussian_policy.StateStdGaussianPolicy (mu, std, eps=Ie-
06)
Bases: mushroom.policy.policy.ParametricPolicy

Gaussian policy with learnable standard deviation. The Covariance matrix is constrained to be a diagonal matrix,
where the diagonal is the squared standard deviation, which is computed for each state. This is a differentiable
policy for continuous action spaces. This policy is similar to the diagonal gaussian policy, but a parametric
regressor is used to compute the standard deviation, so the standard deviation depends on the current state.

__init__ (mu, std, eps=1e-06)
Constructor.

84 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Parameters
* mu (Regressor) — the regressor representing the mean w.r.t. the state;

* std (Regressor) — the regressor representing the standard deviations w.r.t. the state.
The output dimensionality of the regressor must be equal to the action dimensionality;

* eps (float, le-6)— A positive constant added to the variance to ensure that is always
greater than zero.

__call__ (state, action)
Compute the probability of taking action in a certain state following the policy.

Parameters xargs (1ist) — list containing a state or a state and an action.

Returns The probability of all actions following the policy in the given state if the list contains
only the state, else the probability of the given action in the given state following the policy.
If the action space is continuous, state and action must be provided

draw_action (state)
Sample an action in state using the policy.

Parameters state (np.ndarray) — the state where the agent is.
Returns The action sampled from the policy.

diff_ log (state, action)
Compute the gradient of the logarithm of the probability density function, in the specified state and action

pair, i.e.:
Vg logp(s,a)

Parameters

* state (np.ndarray) — the state where the gradient is computed

* action (np.ndarray) - the action where the gradient is computed
Returns The gradient of the logarithm of the pdf w.r.t. the policy weights

set_weights (weights)
Setter.

Parameters weights (np.ndarray)—the vector of the new weights to be used by the policy.

get_weights ()
Getter.

Returns The current policy weights.

weights_size
Property.

Returns The size of the policy weights.

diff (state, action)
Compute the derivative of the probability density function, in the specified state and action pair. Normally
it is computed w.r.t. the derivative of the logarithm of the probability density function, exploiting the

likelihood ratio trick, i.e.:
Vop(s,a) = p(s,a)Vglogp(s,a)

Parameters

* state (np.ndarray) — the state where the derivative is computed

3.9. Policy 85

Mushroom Documentation, Release 1.2.0

* action (np.ndarray) — the action where the derivative is computed
Returns The derivative w.r.t. the policy weights

reset ()
Useful when the policy needs a special initialization at the beginning of an episode.

class mushroom.policy.gaussian_policy.StateLogStdGaussianPolicy (mu, log_std)
Bases: mushroom.policy.policy.ParametricPolicy

Gaussian policy with learnable standard deviation. The Covariance matrix is constrained to be a diagonal matrix,
the diagonal is computed by an exponential transformation of the logarithm of the standard deviation computed
in each state. This is a differentiable policy for continuous action spaces. This policy is similar to the State std
gaussian policy, but here the regressor represents the logarithm of the standard deviation.

__init__ (mu,log_std)
Constructor.

Parameters
* mu (Regressor) — the regressor representing the mean w.r.t. the state;

* log_std (Regressor) — a regressor representing the logarithm of the variance w.r.t.
the state. The output dimensionality of the regressor must be equal to the action dimen-
sionality.

__call__ (state, action)
Compute the probability of taking action in a certain state following the policy.

Parameters *args (11ist)— list containing a state or a state and an action.

Returns The probability of all actions following the policy in the given state if the list contains
only the state, else the probability of the given action in the given state following the policy.
If the action space is continuous, state and action must be provided

draw_action (state)
Sample an action in state using the policy.

Parameters state (np.ndarray) — the state where the agent is.
Returns The action sampled from the policy.

diff log (state, action)
Compute the gradient of the logarithm of the probability density function, in the specified state and action
pair, i.e.:

Vi logp(s,a)

Parameters

* state (np.ndarray) — the state where the gradient is computed

* action (np.ndarray) — the action where the gradient is computed
Returns The gradient of the logarithm of the pdf w.r.t. the policy weights

set_weights (weights)
Setter.

Parameters weights (np.ndarray)—the vector of the new weights to be used by the policy.

get_weights ()
Getter.

Returns The current policy weights.

86 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

weights_size
Property.

Returns The size of the policy weights.

dif £ (state, action)
Compute the derivative of the probability density function, in the specified state and action pair. Normally
it is computed w.r.t. the derivative of the logarithm of the probability density function, exploiting the
likelihood ratio trick, i.e.:

Viop(s,a) = p(s,a)Vglogp(s, a)
Parameters
* state (np.ndarray) — the state where the derivative is computed
* action (np.ndarray) — the action where the derivative is computed

Returns The derivative w.r.t. the policy weights

reset ()
Useful when the policy needs a special initialization at the beginning of an episode.

3.9.3 Noise policy

class mushroom.policy.noise_policy.OrnsteinUhlenbeckPolicy (mu, sigma, theta, dt,

x0=None)
Bases: mushroom.policy.policy.ParametricPolicy

Ornstein-Uhlenbeck process as implemented in: https://github.com/openai/baselines/blob/master/baselines/
ddpg/noise.py.

This policy is commonly used in the Deep Deterministic Policy Gradient algorithm.

__init__ (mu, sigma, theta, dt, xO=None)
Constructor.

Parameters
* mu (Regressor) — the regressor representing the mean w.r.t. the state;

* sigma (np.ndarray) — average magnitude of the random flactations per square-root
time;

¢ theta (float) - rate of mean reversion;
e dt (float) - time interval,
* X0 (np.ndarray, None)— initial values of noise.

__call__ (state, action)
Compute the probability of taking action in a certain state following the policy.

Parameters xargs (1ist)— list containing a state or a state and an action.

Returns The probability of all actions following the policy in the given state if the list contains
only the state, else the probability of the given action in the given state following the policy.
If the action space is continuous, state and action must be provided

draw_action (state)
Sample an action in state using the policy.

Parameters state (np.ndarray) — the state where the agent is.

3.9. Policy 87

https://github.com/openai/baselines/blob/master/baselines/ddpg/noise.py
https://github.com/openai/baselines/blob/master/baselines/ddpg/noise.py

Mushroom Documentation, Release 1.2.0

Returns The action sampled from the policy.

set_weights (weights)
Setter.

Parameters weights (np.ndarray) - the vector of the new weights to be used by the policy.

get_weights ()
Getter.

Returns The current policy weights.

weights_size
Property.

Returns The size of the policy weights.

reset ()
Useful when the policy needs a special initialization at the beginning of an episode.

diff (state, action)
Compute the derivative of the probability density function, in the specified state and action pair. Normally
it is computed w.r.t. the derivative of the logarithm of the probability density function, exploiting the
likelihood ratio trick, i.e.:

Vop(s,a) = p(s,a)Vglogp(s, a)
Parameters
* state (np.ndarray) — the state where the derivative is computed
* action (np.ndarray) — the action where the derivative is computed

Returns The derivative w.r.t. the policy weights

diff log (state, action)
Compute the gradient of the logarithm of the probability density function, in the specified state and action
pair, i.e.:

Vg logp(s, a)
Parameters
* state (np.ndarray) — the state where the gradient is computed

* action (np.ndarray) — the action where the gradient is computed

Returns The gradient of the logarithm of the pdf w.r.t. the policy weights

3.9.4 TD policy

class mushroom.policy.td_policy.TDPolicy
Bases: mushroom.policy.policy.Policy

__init_ ()
Constructor.

set_qg (approximator)

Parameters approximator (object) — the approximator to use.
get_g()

Returns The approximator used by the policy.

88 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

__call__ (*args)
Compute the probability of taking action in a certain state following the policy.

Parameters xargs (1ist) - list containing a state or a state and an action.

Returns The probability of all actions following the policy in the given state if the list contains
only the state, else the probability of the given action in the given state following the policy.
If the action space is continuous, state and action must be provided

draw_action (state)
Sample an action in state using the policy.

Parameters state (np.ndarray) — the state where the agent is.
Returns The action sampled from the policy.

reset ()
Useful when the policy needs a special initialization at the beginning of an episode.

class mushroom.policy.td_policy.EpsGreedy (epsilon)
Bases: mushroom.policy.td policy.TDPolicy

Epsilon greedy policy.

__init__ (epsilon)
Constructor.

Parameters epsilon (Parameter) — the exploration coefficient. It indicates the probability
of performing a random actions in the current step.

__call__ (*args)
Compute the probability of taking action in a certain state following the policy.

Parameters *args (1ist)— list containing a state or a state and an action.

Returns The probability of all actions following the policy in the given state if the list contains
only the state, else the probability of the given action in the given state following the policy.
If the action space is continuous, state and action must be provided

draw_action (state)
Sample an action in state using the policy.

Parameters state (np.ndarray) — the state where the agent is.
Returns The action sampled from the policy.

set_epsilon (epsilon)
Setter.

Parameters
* epsilon (Parameter) — the exploration coefficient. It indicates the

* of performing a random actions in the current step.
(probability)—

update (*idx)
Update the value of the epsilon parameter at the provided index (e.g. in case of different values of epsilon
for each visited state according to the number of visits).

Parameters *idx (1ist)— index of the parameter to be updated.
get_g()
Returns The approximator used by the policy.

3.9. Policy 89

Mushroom Documentation, Release 1.2.0

reset ()
Useful when the policy needs a special initialization at the beginning of an episode.

set_qg (approximator)

Parameters approximator (object) — the approximator to use.

class mushroom.policy.td_policy.Boltzmann (beta)

Bases: mushroom.policy.td policy.TDPolicy
Boltzmann softmax policy.

__init_ (beta)
Constructor.

Parameters
* beta (Parameter) — the inverse of the temperature distribution. As

* temperature approaches infinity, the policy becomes more
and (the) —

* random. As the temperature approaches 0.0, the policy
becomes (more) —

* and more greedy. (more)—

__call__ (*args)
Compute the probability of taking action in a certain state following the policy.

Parameters xargs (11ist)— list containing a state or a state and an action.

Returns The probability of all actions following the policy in the given state if the list contains
only the state, else the probability of the given action in the given state following the policy.
If the action space is continuous, state and action must be provided

draw_action (state)
Sample an action in state using the policy.

Parameters state (np.ndarray) — the state where the agent is.
Returns The action sampled from the policy.

set_beta (beta)
Setter.

Parameters beta (Parameter) — the inverse of the temperature distribution.

update (*idx)
Update the value of the beta parameter at the provided index (e.g. in case of different values of beta for
each visited state according to the number of visits).

Parameters *idx (11ist)— index of the parameter to be updated.
get_qg()
Returns The approximator used by the policy.

reset ()
Useful when the policy needs a special initialization at the beginning of an episode.

set_qg (approximator)

Parameters approximator (object) — the approximator to use.

90

Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

class mushroom.policy.td_policy.Mellowmax (omega, beta_min=-10.0, beta_max=10.0)
Bases: mushroom.policy.td policy.Boltzmann

Mellowmax policy. “An Alternative Softmax Operator for Reinforcement Learning”. Asadi K. and Littman
M.L.. 2017.

__init__ (omega, beta_min=-10.0, beta_max=10.0)
Constructor.

Parameters

* omega (Parameter) — the omega parameter of the policy from which beta of the Boltz-
mann policy is computed;

* beta_min (float, -10.)-one end of the bracketing interval for minimization with
Brent’s method,;

* beta_max (float, 10.) - the other end of the bracketing interval for minimization
with Brent’s method.

set_beta (beta)
Setter.

Parameters beta (Parameter) — the inverse of the temperature distribution.

update (*idx)
Update the value of the beta parameter at the provided index (e.g. in case of different values of beta for
each visited state according to the number of visits).

Parameters xidx (11ist)— index of the parameter to be updated.

__call__ (*args)
Compute the probability of taking action in a certain state following the policy.

Parameters xargs (1ist)— list containing a state or a state and an action.

Returns The probability of all actions following the policy in the given state if the list contains
only the state, else the probability of the given action in the given state following the policy.
If the action space is continuous, state and action must be provided

draw_action (state)
Sample an action in state using the policy.

Parameters state (np.ndarray) — the state where the agent is.
Returns The action sampled from the policy.

get_g()
Returns The approximator used by the policy.

reset ()
Useful when the policy needs a special initialization at the beginning of an episode.

set_qg (approximator)

Parameters approximator (ob ject) — the approximator to use.

3.9.5 Torch policy

class mushroom.policy.torch_policy.TorchPolicy (use_cuda)
Bases: mushroom.policy.policy.Policy

3.9. Policy 91

Mushroom Documentation, Release 1.2.0

Interface for a generic PyTorch policy. A PyTorch policy is a policy implemented as a neural network using
PyTorch. Functions ending with ‘_t’ use tensors as input, and also as output when required.

__init_ (use_cuda)
Constructor.

Parameters use_cuda (bool) — whether to use cuda or not.

__call__ (state, action)
Compute the probability of taking action in a certain state following the policy.

Parameters xargs (1ist) — list containing a state or a state and an action.

Returns The probability of all actions following the policy in the given state if the list contains
only the state, else the probability of the given action in the given state following the policy.
If the action space is continuous, state and action must be provided

draw_action (state)
Sample an action in state using the policy.

Parameters state (np.ndarray) — the state where the agent is.
Returns The action sampled from the policy.

distribution (state)
Compute the policy distribution in the given states.

Parameters state (np.ndarray) — the set of states where the distribution is computed.
Returns The torch distribution for the provided states.

entropy (state=None)
Compute the entropy of the policy.

Parameters state (np.ndarray, None) — the set of states to consider. If the entropy of
the policy can be computed in closed form, then state can be None.

Returns The value of the entropy of the policy.

draw_action_t (state)
Draw an action given a tensor.

Parameters state (torch. Tensor) — set of states.
Returns The tensor of the actions to perform in each state.

log_prob_t (state, action)
Compute the logarithm of the probability of taking action in state.

Parameters

e state (torch. Tensor) — set of states.

e action (torch. Tensor) — set of actions.
Returns The tensor of log-probability.

entropy_t (state=None)
Compute the entropy of the policy.

Parameters state (torch. Tensor) — the set of states to consider. If the entropy of the
policy can be computed in closed form, then state can be None.

Returns The tensor value of the entropy of the policy.

distribution_t (state)
Compute the policy distribution in the given states.

92 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Parameters state (torch. Tensor) — the set of states where the distribution is computed.
Returns The torch distribution for the provided states.

set_weights (weights)
Setter.

Parameters weights (np.ndarray)—the vector of the new weights to be used by the policy.

get_weights ()
Getter.

Returns The current policy weights.

parameters ()
Returns the trainable policy parameters, as expected by torch optimizers.

Returns List of parameters to be optimized.

reset ()
Useful when the policy needs a special initialization at the beginning of an episode.

use_cuda
True if the policy is using cuda_tensors.

class mushroom.policy.torch_policy.GaussianTorchPolicy (network, input_shape, out-
put_shape, std_0=1.0,
use_cuda=False,

**params)
Bases: mushroom.policy.torch_policy.TorchPolicy

Torch policy implementing a Gaussian policy with trainable standard deviation. The standard deviation is not
state-dependent.

__init__ (network, input_shape, output_shape, std_0=1.0, use_cuda=False, **params)
Constructor.

Parameters
* network (object) — the network class used to implement the mean regressor;
* input_shape (tuple) — the shape of the state space;
* output_shape (tuple) — the shape of the action space;
e std_0(float, 1.)-initial standard deviation;
* params (dict) — parameters used by the network constructor.

draw_action_t (state)
Draw an action given a tensor.

Parameters state (torch. Tensor) — set of states.
Returns The tensor of the actions to perform in each state.

log_prob_t (state, action)
Compute the logarithm of the probability of taking action in state.

Parameters
e state (torch. Tensor) — set of states.
* action (torch. Tensor) — set of actions.

Returns The tensor of log-probability.

3.9. Policy 93

Mushroom Documentation, Release 1.2.0

entropy_t (state=None)
Compute the entropy of the policy.

Parameters state (torch. Tensor) — the set of states to consider. If the entropy of the
policy can be computed in closed form, then state can be None.

Returns The tensor value of the entropy of the policy.

distribution_t (state)
Compute the policy distribution in the given states.

Parameters state (torch. Tensor) — the set of states where the distribution is computed.
Returns The torch distribution for the provided states.

set_weights (weights)
Setter.

Parameters weights (np.ndarray)-the vector of the new weights to be used by the policy.

get_weights ()
Getter.

Returns The current policy weights.

parameters ()
Returns the trainable policy parameters, as expected by torch optimizers.

Returns List of parameters to be optimized.

__call__ (state, action)
Compute the probability of taking action in a certain state following the policy.

Parameters *args (1ist) — list containing a state or a state and an action.

Returns The probability of all actions following the policy in the given state if the list contains
only the state, else the probability of the given action in the given state following the policy.
If the action space is continuous, state and action must be provided

distribution (state)
Compute the policy distribution in the given states.

Parameters state (np.ndarray) — the set of states where the distribution is computed.
Returns The torch distribution for the provided states.

draw_action (state)
Sample an action in state using the policy.

Parameters state (np.ndarray) — the state where the agent is.
Returns The action sampled from the policy.

entropy (state=None)
Compute the entropy of the policy.

Parameters state (np.ndarray, None) - the set of states to consider. If the entropy of
the policy can be computed in closed form, then state can be None.

Returns The value of the entropy of the policy.

reset ()
Useful when the policy needs a special initialization at the beginning of an episode.

use_cuda
True if the policy is using cuda_tensors.

94 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

3.10 Solvers

3.10.1 Dynamic programming
mushroom.solvers.dynamic_programming.value_iteration (prob, reward, gamma, eps)
Value iteration algorithm to solve a dynamic programming problem.
Parameters

* prob (np.ndarray) — transition probability matrix;

* reward (np.ndarray) - reward matrix;

e gamma (f1oat) — discount factor;

* eps (float) — accuracy threshold.

Returns The optimal value of each state.

mushroom.solvers.dynamic_programming.policy_iteration (prob, reward, gamma)
Policy iteration algorithm to solve a dynamic programming problem.

Parameters
* prob (np.ndarray) — transition probability matrix;
* reward (np.ndarray) — reward matrix;
e gamma (f1oat) — discount factor.

Returns The optimal value of each state and the optimal policy.

3.10.2 Car-On-Hill brute-force solver
mushroom.solvers.car_on_hill.step (mdp, state, action)
Perform a step in the tree.
Parameters
* mdp (CarOnHi11) —the Car-On-Hill environment;
* state (np.array) — the state;
e action (np.array) — the action.
Returns The resulting transition executing action in state.

mushroom.solvers.car_on_hill.bfs (mdp, frontier, k, max_k)
Perform Breadth-First tree search.

Parameters
* mdp (CarOnHi11) —the Car-On-Hill environment;
* frontier (1ist) - the state at the frontier of the BFS;
* k (int) — the current depth of the tree;
* max_k (int)— maximum depth to consider.
Returns A tuple containing a flag for the algorithm ending, and the updated depth of the tree.
mushroom.solvers.car_on_hill.solve_car_on_hill (mdp, states, actions, gamma,

max_k=50)
Solver of the Car-On-Hill environment.

3.10. Solvers 95

Mushroom Documentation, Release 1.2.0

Parameters
* mdp (CarOnHi11) —the Car-On-Hill environment;
* states (np.ndarray) — the states;
e actions (np.ndarray) — the actions;
* gamma (f1oat) — the discount factor;
* max_k (int, 50)-— maximum depth to consider.

Returns The Q-value for each state-action tuple.

3.11 Utils

3.11.1 Angles

mushroom.utils.angles.normalize_angle_positive (angle)
Wrap the angle between 0 and 2 * pi.

Parameters angle (f1oat) — angle to wrap.
Returns The wrapped angle.

mushroom.utils.angles.normalize_angle (angle)
Wrap the angle between -pi and pi.

Parameters angle (f1oat) — angle to wrap.
Returns The wrapped angle.

mushroom.utils.angles.shortest_angular_distance (from_angle, to_angle)
Compute the shortest distance between two angles

Parameters
* from angle (float) — starting angle;
* to_angle (float) - final angle.

Returns The shortest distance between from_angle and to_angle.

3.11.2 Callbacks

class mushroom.utils.callbacks.Callback
Bases: object

Interface for all basic callbacks. Implements a list in which it is possible to store data and methods to query and
clean the content stored by the callback.

__init__ ()
Initialize self. See help(type(self)) for accurate signature.

___call__ (dataset)
Add samples to the samples list.

Parameters dataset (11ist) - the samples to collect.
get ()

Returns The current collected data as a list.

96 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

clean ()
Deletes the current stored data list

class mushroom.utils.callbacks.CollectDataset
Bases: mushroom.utils.callbacks.Callback

This callback can be used to collect samples during the learning of the agent.

__call__ (dataset)
Add samples to the samples list.

Parameters dataset (11ist)— the samples to collect.

class mushroom.utils.callbacks.CollectQ (approximator)
Bases: mushroom.utils.callbacks.Callback

This callback can be used to collect the action values in all states at the current time step.

__init___ (approximator)
Constructor.

Parameters approximator ([Table, EnsembleTable]) — the approximator to use to
predict the action values.

__call_ (**kwargs)
Add action values to the action-values list.

Parameters **kwargs (dict)—empty dictionary.

class mushroom.utils.callbacks.CollectMaxQ (approximator, state)
Bases: mushroom.utils.callbacks.Callback

This callback can be used to collect the maximum action value in a given state at each call.

__init__ (approximator, state)
Constructor.

Parameters
* approximator ([Table, EnsembleTable])- the approximator to use;
e state (np.ndarray) — the state to consider.

__call__ (**kwargs)
Add maximum action values to the maximum action-values list.

Parameters *xkwargs (dict)— empty dictionary.

class mushroom.utils.callbacks.CollectParameters (parameter, *idx)
Bases: mushroom.utils.callbacks.Callback

This callback can be used to collect the values of a parameter (e.g. learning rate) during a run of the agent.

__init__ (parameter, *idx)
Constructor.

Parameters
* parameter (Parameter) — the parameter whose values have to be collected;
* xidx (11ist)— index of the parameter when the parameter is tabular.

__call__ (**kwargs)
Add the parameter value to the parameter values list.

Parameters *xkwargs (dict)— empty dictionary.

3.11. Utils 97

Mushroom Documentation, Release 1.2.0

3.11.3 Dataset

mushroom.utils.dataset .parse_dataset (dataset, features=None)
Split the dataset in its different components and return them.

Parameters
* dataset (1ist) - the dataset to parse;
* features (object, None) - features to apply to the states.

Returns The np.ndarray of state, action, reward, next_state, absorbing flag and last step flag. Fea-
tures are applied to state and next_state, when provided.

mushroom.utils.dataset .episodes_1length (dataset)
Compute the length of each episode in the dataset.

Parameters dataset (11st) - the dataset to consider.
Returns A list of length of each episode in the dataset.

mushroom.utils.dataset.select_first_episodes (dataset, n_episodes, parse=False)
Return the first n_episodes episodes in the provided dataset.

Parameters
e dataset (11ist) - the dataset to consider;
* n_episodes (int) — the number of episodes to pick from the dataset;
* parse (bool, False)— whether to parse the dataset to return.
Returns A subset of the dataset containing the first n_episodes episodes.

mushroom.utils.dataset.select_random_samples (dataset, n_samples, parse=False)
Return the randomly picked desired number of samples in the provided dataset.

Parameters
e dataset (1ist) - the dataset to consider;
* n_samples (int) —the number of samples to pick from the dataset;
* parse (bool, False)— whether to parse the dataset to return.
Returns A subset of the dataset containing randomly picked n_samples samples.

mushroom.utils.dataset .compute_J (dataset, gamma=1.0)
Compute the cumulative discounted reward of each episode in the dataset.

Parameters
e dataset (1ist) - the dataset to consider;
e gamma (float, 1.)- discount factor.
Returns The cumulative discounted reward of each episode in the dataset.

mushroom.utils.dataset.compute_metrics (dataset, gamma=1.0)
Compute the metrics of each complete episode in the dataset.

Parameters
e dataset (1ist) - the dataset to consider;

* gamma (float, 1.0)- the discount factor.

98 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Returns

The minimum score reached in an episode, the maximum score reached in an episode, the mean
score reached, the number of completed games.

If episode has been completed, it returns O for all values.

3.11.4 Eligibility trace
mushroom.utils.eligibility_trace.EligibilityTrace (shape, name="'replacing’)
Factory method to create an eligibility trace of the provided type.
Parameters
* shape (1ist)—shape of the eligibility trace table;
* name (str, 'replacing')-type of the eligibility trace.
Returns The eligibility trace table of the provided shape and type.

class mushroom.utils.eligibility_trace.ReplacingTrace (shape, initial_value=0.0,
dtype=None)
Bases: mushroom.utils.table.Table

Replacing trace.
reset ()
update (state, action)

__init__ (shape, initial_value=0.0, dtype=None)
Constructor.

Parameters
* shape (tuple) — the shape of the tabular regressor.

e initial_wvalue (float, 0.)- the initial value for each entry of the tabular regres-
Sor.

e dtype ([int, float], None) - the dtype of the table array.
fit (x,y)
Parameters
¢ x (int)—index of the table to be filled;
e y (float) - value to fill in the table.

n_actions
The number of actions considered by the table.

Type Returns

predict (*z)
Predict the output of the table given an input.

Parameters
e xz (11ist) - list of input of the model. If the table is a Q-table,

* list may contain states or states and actions depending
(this) — on whether the call requires to predict all g-values or only one g-value
corresponding to the provided action;

3.11. Utils 99

Mushroom Documentation, Release 1.2.0

Returns The table prediction.

shape
The shape of the table.

Type Returns

class mushroom.utils.eligibility_trace.AccumulatingTrace (shape, initial_value=0.0,
dtype=None)

Bases: mushroom.utils.table.Table
Accumulating trace.

reset ()

update (state, action)

__init__ (shape, initial_value=0.0, dtype=None)
Constructor.

Parameters
* shape (tuple) — the shape of the tabular regressor.

* initial value (float, 0.) - the initial value for each entry of the tabular regres-
SOT.

e dtype ([int, float], None)— the dtype of the table array.
fit (x,y)
Parameters
¢ x (int)—index of the table to be filled;

e y (float) - value to fill in the table.

n_actions
The number of actions considered by the table.

Type Returns

predict (*z)
Predict the output of the table given an input.

Parameters

e xz (11ist) - list of input of the model. If the table is a Q-table,

* list may contain states or states and actions depending
(this) — on whether the call requires to predict all g-values or only one g-value
corresponding to the provided action;

Returns The table prediction.

shape
The shape of the table.

Type Returns

3.11.5 Features

mushroom.utils.features.uniform_grid (n_centers, low, high)
This function is used to create the parameters of uniformly spaced radial basis functions with 25% of overlap.

100 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

It creates a uniformly spaced grid of n_centers[i] points in each ranges[i]. Also returns a vector
containing the appropriate scales of the radial basis functions.

Parameters
* n_centers (11ist)—number of centers of each dimension,;
e low (np.ndarray) — lowest value for each dimension;
* high (np.ndarray) — highest value for each dimension.

Returns The uniformly spaced grid and the scale vector.

3.11.6 Folder

mushroom.utils.folder.mk_dir_recursive (dir_path)
Create a directory and, if needed, all the directory tree. Differently from os.mkdir, this function does not raise
exception when the directory already exists.

Parameters dir_path (str) — the path of the directory to create.

mushroom.utils.folder.force_symlink (src, dst)
Create a symlink deleting the previous one, if it already exists.

Parameters
e src (str) - source;

e dst (str)— destination.

3.11.7 Minibatches

mushroom.utils.minibatches.minibatch_number (size, batch_size)
Function to retrieve the number of batches, given a batch sizes.

Parameters

e size (int) - size of the dataset;

e batch_size (int) - size of the batches.
Returns The number of minibatches in the dataset.

mushroom.utils.minibatches.minibatch_generator (batch_size, *dataset)
Generator that creates a minibatch from the full dataset.

Parameters
* batch_size (int) - the maximum size of each minibatch;
* dataset - the dataset to be splitted.

Returns The current minibatch.

3.11.8 Numerical gradient

mushroom.utils.numerical_gradient.numerical_diff_ policy (policy, state, action,
eps=1e-06)
Compute the gradient of a policy in (state, action) numerically.

Parameters

3.11. Utils 101

Mushroom Documentation, Release 1.2.0

* policy (Policy) — the policy whose gradient has to be returned;
* state (np.ndarray) — the state;
* action (np.ndarray) - the action;
* eps (float, Ie-6)— the value of the perturbation.
Returns The gradient of the provided policy in (state, action) computed numerically.

mushroom.utils.numerical_gradient.numerical_ diff dist (dist, theta, eps=1e-06)
Compute the gradient of a distribution in theta numerically.

Parameters
* dist (Distribution) - the distribution whose gradient has to be returned;
* theta (np.ndarray) — the parametrization where to compute the gradient;
* eps (float, Ie-6)— the value of the perturbation.

Returns The gradient of the provided distribution theta computed numerically.

3.11.9 Parameters

class mushroom.utils.parameters.Parameter (value, min_value=None, max_value=None,

size=(1,))
Bases: object

This class implements function to manage parameters, such as learning rate. It also allows to have a single
parameter for each state of state-action tuple.

__init_ (value, min_value=None, max_value=None, size=(1,))
Constructor.

Parameters
* value (float) —initial value of the parameter;

* min_value (float, None)- minimum value that the parameter can reach when de-
creasing;

* max_value (float, None)- maximum value that the parameter can reach when in-
creasing;

e size (tuple, (1,)) - shape of the matrix of parameters; this shape can be used to
have a single parameter for each state or state-action tuple.

__call__ (*dx, **kwargs)
Update and return the parameter in the provided index.

Parameters xidx (1ist)— index of the parameter to return.
Returns The updated parameter in the provided index.

get_value (*idx, **kwargs)
Return the current value of the parameter in the provided index.

Parameters xidx (11ist)— index of the parameter to return.
Returns The current value of the parameter in the provided index.
_compute (*idx, **kwargs)

Returns The value of the parameter in the provided index.

102 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

update (*idx, **kwargs)
Updates the number of visit of the parameter in the provided index.

Parameters xidx (11ist)—index of the parameter whose number of visits has to be updated.

shape
The shape of the table of parameters.

Type Returns

class mushroom.utils.parameters.LinearParameter (value, threshold_value, n, size=(1,))
Bases: mushroom.utils.parameters.Parameter

This class implements a linearly changing parameter according to the number of times it has been used.

__init__ (value, threshold_value, n, size=(1,))
Constructor.

Parameters
* value (float) — initial value of the parameter;

* min_value (float, None)- minimum value that the parameter can reach when de-
creasing;

* max_value (float, None)- maximum value that the parameter can reach when in-
creasing;

* size (tuple, (1,)) - shape of the matrix of parameters; this shape can be used to
have a single parameter for each state or state-action tuple.

_compute (*idx, **kwargs)
Returns: The value of the parameter in the provided index.

__call__ (*dx, **kwargs)
Update and return the parameter in the provided index.

Parameters *idx (1ist) - index of the parameter to return.
Returns The updated parameter in the provided index.

get_value (*idx, **kwargs)
Return the current value of the parameter in the provided index.

Parameters xidx (1ist)— index of the parameter to return.
Returns The current value of the parameter in the provided index.

shape
The shape of the table of parameters.

Type Returns

update (*idx, **kwargs)
Updates the number of visit of the parameter in the provided index.

Parameters *idx (11ist)— index of the parameter whose number of visits has to be updated.

class mushroom.utils.parameters.ExponentialParameter (value, exp=1.0,
min_value=None,
max_value=None, size=(1,
)

Bases: mushroom.utils.parameters.Parameter

This class implements a exponentially changing parameter according to the number of times it has been used.

3.11. Utils 103

Mushroom Documentation, Release 1.2.0

__init__ (value, exp=1.0, min_value=None, max_value=None, size=(1,))
Constructor.

Parameters
* value (float) — initial value of the parameter;

* min_value (float, None)- minimum value that the parameter can reach when de-
creasing;

* max_value (float, None)- maximum value that the parameter can reach when in-
creasing;

e size (tuple, (1,)) - shape of the matrix of parameters; this shape can be used to
have a single parameter for each state or state-action tuple.

_compute (*idx, **kwargs)
Returns: The value of the parameter in the provided index.

__call__ (*dx, **kwargs)
Update and return the parameter in the provided index.

Parameters *idx (1ist) - index of the parameter to return.
Returns The updated parameter in the provided index.

get_value (*idx, **kwargs)
Return the current value of the parameter in the provided index.

Parameters *idx (1ist) - index of the parameter to return.
Returns The current value of the parameter in the provided index.

shape
The shape of the table of parameters.

Type Returns

update (*idx, **kwargs)
Updates the number of visit of the parameter in the provided index.

Parameters *idx (Iist)— index of the parameter whose number of visits has to be updated.

class mushroom.utils.parameters.AdaptiveParameter (value)
Bases: object

This class implements a basic adaptive gradient step. Instead of moving of a step proportional to the gradient,
takes a step limited by a given metric. To specify the metric, the natural gradient has to be provided. If natural
gradient is not provided, the identity matrix is used.

The step rule is:

A = argmaxAz?th)J
A9

st AVTMAY < ¢

Lecture notes, Neumann G. http://www.ias.informatik.tu-darmstadt.de/uploads/Geri/lecture-notes-constraint.
pdf

__init_ (value)
Initialize self. See help(type(self)) for accurate signature.

__call__ (*args, **kwargs)
Call self as a function.

104 Chapter 3. Download and installation

http://www.ias.informatik.tu-darmstadt.de/uploads/Geri/lecture-notes-constraint.pdf
http://www.ias.informatik.tu-darmstadt.de/uploads/Geri/lecture-notes-constraint.pdf

Mushroom Documentation, Release 1.2.0

3.11.10 Replay memory
class mushroom.utils.replay_memory.ReplayMemory (initial_size, max_size)
Bases: object

This class implements function to manage a replay memory as the one used in “Human-Level Control Through
Deep Reinforcement Learning” by Mnih V. et al..

__init_ (initial_size, max_size)
Constructor.

Parameters
e initial_size (int) — initial number of elements in the replay memory;
* max_size (int)- maximum number of elements that the replay memory can contain.

add (dataset)
Add elements to the replay memory.

Parameters dataset (1ist) - list of elements to add to the replay memory.

get (n_samples)
Returns the provided number of states from the replay memory.

Parameters n_samples (int) — the number of samples to return.
Returns The requested number of samples.

reset ()
Reset the replay memory.

initialized
Whether the replay memory has reached the number of elements that allows it to be used.

Type Returns

size
The number of elements contained in the replay memory.

Type Returns

class mushroom.utils.replay_memory.SumTree (max_size)
Bases: object

This class implements a sum tree data structure. This is used, for instance, by PrioritizedReplayMemory.

__init_ (max_size)
Constructor.

Parameters max_size (int)- maximum size of the tree.

add (dataset, priority)
Add elements to the tree.

Parameters
¢ dataset (1ist) - list of elements to add to the tree;
* p(np.ndarray) — priority of each sample in the dataset.

get (s)
Returns the provided number of states from the replay memory.

Parameters s (float) - the value of the samples to return.

3.11. Utils 105

Mushroom Documentation, Release 1.2.0

Returns The requested sample.

update (idx, priorities)
Update the priority of the sample at the provided index in the dataset.

Parameters
e idx (np.ndarray) — indexes of the transitions in the dataset;
* priorities (np.ndarray) — priorities of the transitions.

size
The current size of the tree.

Type Returns

max_p
The maximum priority among the ones in the tree.

Type Returns

total_p
The sum of the priorities in the tree, i.e. the value of the root node.

Type Returns

class mushroom.utils.replay_memory.PrioritizedReplayMemory (initial_size, max_size,
alpha, beta, ep-
silon=0.01)
Bases: object

This class implements function to manage a prioritized replay memory as the one used in “Prioritized Experience
Replay” by Schaul et al., 2015.

__init__ (initial_size, max_size, alpha, beta, epsilon=0.01)
Constructor.

Parameters
e initial_size (int)—initial number of elements in the replay memory;
* max_size (int) - maximum number of elements that the replay memory can contain;
* alpha (float) — prioritization coefficient;
* beta (float) - importance sampling coefficient;
* epsilon(float, 01)-small value to avoid zero probabilities.

add (dataset, p)
Add elements to the replay memory.

Parameters
* dataset (list) - list of elements to add to the replay memory;
* p(np.ndarray) — priority of each sample in the dataset.

get (n_samples)
Returns the provided number of states from the replay memory.

Parameters n_samples (int) — the number of samples to return.
Returns The requested number of samples.

update (error, idx)
Update the priority of the sample at the provided index in the dataset.

106 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Parameters
* error (np.ndarray) — errors to consider to compute the priorities;
e idx (np.ndarray) - indexes of the transitions in the dataset.
initialized
Whether the replay memory has reached the number of elements that allows it to be used.
Type Returns

max_priority
The maximum value of priority inside the replay memory.

Type Returns

3.11.11 Spaces

class mushroom.utils.spaces.Box (low, high, shape=None)
Bases: object

This class implements functions to manage continuous states and action spaces. It is similar to the Box class in
gym.spaces.box.

__init__ (low, high, shape=None)
Constructor.

Parameters

* low([float, np.ndarray])-the minimum value of each dimension of the space.
If a scalar value is provided, this value is considered as the minimum one for each dimen-
sion. If a np.ndarray is provided, each i-th element is considered the minimum value of
the i-th dimension;

* high ([float, np.ndarray])-the maximum value of dimensions of the space. If
a scalar value is provided, this value is considered as the maximum one for each dimension.
If a np.ndarray is provided, each i-th element is considered the maximum value of the i-th
dimension;

* shape (np.ndarray, None) - the dimension of the space. Must match the shape of
low and high, if they are np.ndarray.

low
The minimum value of each dimension of the space.

Type Returns

high
The maximum value of each dimension of the space.

Type Returns

shape
The dimensions of the space.

Type Returns

class mushroom.utils.spaces.Discrete (n)
Bases: object

This class implements functions to manage discrete states and action spaces. It is similar to the Discrete
class in gym. spaces.discrete.

3.11. Utils 107

Mushroom Documentation, Release 1.2.0

__init__ (n)
Constructor.

Parameters n (int) - the number of values of the space.

size
The number of elements of the space.

Type Returns

shape
The shape of the space that is always (1,).

Type Returns

3.11.12 Table

class mushroom.utils.table.Table (shape, initial_value=0.0, dtype=None)
Bases: object

Table regressor. Used for discrete state and action spaces.

__init__ (shape, initial_value=0.0, dtype=None)
Constructor.

Parameters
* shape (tuple) — the shape of the tabular regressor.

e initial_wvalue (float, 0.)- the initial value for each entry of the tabular regres-
SOT.

e dtype ([int, float], None)-the dtype of the table array.
fit (x,y)
Parameters
e x (int)—index of the table to be filled;
e y (float) - value to fill in the table.

predict (*z)
Predict the output of the table given an input.

Parameters
e xz (11ist) - list of input of the model. If the table is a Q-table,

* list may contain states or states and actions depending
(this) — on whether the call requires to predict all g-values or only one g-value
corresponding to the provided action;

Returns The table prediction.

n_actions
The number of actions considered by the table.

Type Returns

shape
The shape of the table.

Type Returns

108 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

class mushroom.utils.table.EnsembleTable (n_models, shape)
Bases: mushroom.approximators._implementations.ensemble.Ensemble

This class implements functions to manage table ensembles.

__init_ (n_models, shape)
Constructor.

Parameters
¢ n_models (int)— number of models in the ensemble;
* shape (np.ndarray) — shape of each table in the ensemble.

fit (*z, idx=None, **fit_params)
Fit the i dx-th model of the ensemble if idx is provided, every model otherwise.

Parameters

* xz (1ist) — a list containing the inputs to use to predict with each regressor of the en-
semble;

e idx (int, None) - index of the model to fit;
* xxfit_params (dict) — other params.

model
The list of the models in the ensemble.

Type Returns

predict (*z, idx=None, prediction="mean’, compute_variance=False, **predict_params)
Predict.

Parameters

* xz (1ist) — a list containing the inputs to use to predict with each regressor of the en-
semble;

e idx (int, None)- index of the model to use for prediction;

e prediction (str, 'mean')-the type of prediction to make. It can be a ‘mean’ of
the ensembles, or a ‘sum’;

* compute_variance (bool, False)— whether to compute the variance of the pre-
diction or not;

* xxpredict_params (dict)— other parameters used by the predict method the regres-
SOr.

Returns The predictions of the model.

reset ()
Reset the model parameters.

3.11.13 Torch

mushroom.utils.torch.set_weights (parameters, weights, use_cuda)
Function used to set the value of a set of torch parameters given a vector of values.

Parameters
* parameters (11ist) - list of parameters to be considered,;

* weights (numpy.ndarray) — array of the new values for the parameters;

3.11. Utils 109

Mushroom Documentation, Release 1.2.0

* use_cuda (bool)— whether the parameters are cuda tensors or not;

mushroom.utils.torch.get_weights (parameters)
Function used to get the value of a set of torch parameters as a single vector of values.

Parameters parameters (11ist) - list of parameters to be considered.
Returns A numpy vector consisting of all the values of the vectors.

mushroom.utils.torch.zero_grad (parameters)
Function used to set to zero the value of the gradient of a set of torch parameters.

Parameters parameters (11ist) - list of parameters to be considered.

mushroom.utils.torch.get_gradient (params)
Function used to get the value of the gradient of a set of torch parameters.

Parameters parameters (1ist) - list of parameters to be considered.

mushroom.utils.torch.to float tensor (x, use _cuda=False)
Function used to convert a numpy array to a float torch tensor.

Parameters
* x (np.ndarray)—numpy array to be converted as torch tensor;
¢ use_cuda (bool) — whether to build a cuda tensors or not.

Returns A float tensor build from the values contained in the input array.

3.11.14 Value Functions

mushroom.utils.value_functions.compute_advantage_montecarlo (V, s, ss, r, absorbing,

gamma)
Function to estimate the advantage and new value function target over a dataset. The value function is estimated

using rollouts (monte carlo estimation).
Parameters
* V(Regressor) — the current value function regressor;
* s (numpy.ndarray) — the set of states in which we want to evaluate the advantage;
* ss (numpy.ndarray) —the set of next states in which we want to evaluate the advantage;
* r (numpy.ndarray) — the reward obtained in each transition from state s to state ss;

* absorbing (numpy.ndarray)— an array of boolean flags indicating if the reached state
is absorbing;

* gamma (f1oat) — the discount factor of the considered problem.
Returns The new estimate for the value function of the next state and the advantage function.

mushroom.utils.value_functions.compute_advantage (V, s, ss, r, absorbing, gamma)
Function to estimate the advantage and new value function target over a dataset. The value function is estimated
using bootstrapping.

Parameters
* V(Regressor) — the current value function regressor;
* s (numpy.ndarray) — the set of states in which we want to evaluate the advantage;

* ss (numpy.ndarray) —the set of next states in which we want to evaluate the advantage;

110 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

e r (numpy.ndarray) — the reward obtained in each transition from state s to state ss;

* absorbing (numpy.ndarray)—an array of boolean flags indicating if the reached state
is absorbing;

* gamma (float) — the discount factor of the considered problem.
Returns The new estimate for the value function of the next state and the advantage function.

mushroom.utils.value_functions.compute_gae (V, s, ss, r, absorbing, last, gamma, lam)
Function to compute Generalized Advantage Estimation (GAE) and new value function target over a dataset.

“High-Dimensional Continuous Control Using Generalized Advantage Estimation”. Schulman J. et al.. 2016.
Parameters
* V(Regressor) — the current value function regressor;
* s (numpy.ndarray) — the set of states in which we want to evaluate the advantage;
* ss (numpy.ndarray) - the set of next states in which we want to evaluate the advantage;
* r (numpy.ndarray) — the reward obtained in each transition from state s to state ss;

* absorbing (numpy.ndarray)—an array of boolean flags indicating if the reached state
is absorbing;

* last (numpy.ndarray) — an array of boolean flags indicating if the reached state is the
last of the trajectory;

* gamma (f1oat) — the discount factor of the considered problem;
* lam (float) — the value for the lamba coefficient used by GEA algorithm.

Returns The new estimate for the value function of the next state and the estimated generalized
advantage.

3.11.15 Variance parameters

class mushroom.utils.variance_parameters.VarianceParameter (value, expo-
nential=False,
min_value=None,
tol=1.0, size=(1,))
Bases: mushroom.utils.parameters.Parameter

Abstract class to implement variance-dependent parameters. A target parameter is expected.

__init__ (value, exponential=False, min_value=None, tol=1.0, size=(1,))
Constructor.

Parameters tol (float) - value of the variance of the target variable such that The parameter
value is 0.5.

_compute (*idx, **kwargs)
Returns: The value of the parameter in the provided index.

update (*idx, **kwargs)
Updates the value of the parameter in the provided index.

Parameters
e xidx (1ist) - index of the parameter whose number of visits has to be updated.

* target (float)— Value of the target variable;

3.11. Utils 111

Mushroom Documentation, Release 1.2.0

* factor (f1loat)— Multiplicative factor for the parameter value, useful when the param-
eter depend on another parameter value.

__call__ (*dx, **kwargs)
Update and return the parameter in the provided index.

Parameters *idx (1ist)— index of the parameter to return.
Returns The updated parameter in the provided index.

get_value (*idx, **kwargs)
Return the current value of the parameter in the provided index.

Parameters *idx (1ist)— index of the parameter to return.
Returns The current value of the parameter in the provided index.

shape
The shape of the table of parameters.

Type Returns

class mushroom.utils.variance_parameters.VarianceIncreasingParameter (value,

expo-

nen-

tial=False,
min_value=None,
tol=1.0,

size=(1,

))

Bases: mushroom.utils.variance_parameters.VarianceParameter
Class implementing a parameter that increases with the target variance.

__call__ (*dx, **kwargs)
Update and return the parameter in the provided index.

Parameters *idx (1ist)—index of the parameter to return.
Returns The updated parameter in the provided index.

__init_ (value, exponential=False, min_value=None, tol=1.0, size=(1,))
Constructor.

Parameters tol (float)— value of the variance of the target variable such that The parameter
value is 0.5.

_compute (*idx, **kwargs)
Returns: The value of the parameter in the provided index.

get_value (*idx, **kwargs)
Return the current value of the parameter in the provided index.

Parameters *idx (1ist) - index of the parameter to return.
Returns The current value of the parameter in the provided index.

shape
The shape of the table of parameters.

Type Returns

update (*idx, **kwargs)
Updates the value of the parameter in the provided index.

Parameters

112 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

* xidx (11ist)— index of the parameter whose number of visits has to be updated.
* target (float)— Value of the target variable;

» factor (float)— Multiplicative factor for the parameter value, useful when the param-
eter depend on another parameter value.

class mushroom.utils.variance_parameters.VarianceDecreasingParameter (value,

expo-
nen-

tial=False,
min_value=None,
tol=1.0,

size=(1,

))

Bases: mushroom.utils.variance_parameters.VarianceParameter
Class implementing a parameter that decreases with the target variance.

__call__ (*dx, **kwargs)
Update and return the parameter in the provided index.

Parameters *idx (1ist)— index of the parameter to return.
Returns The updated parameter in the provided index.

__init__ (value, exponential=False, min_value=None, tol=1.0, size=(1,))
Constructor.

Parameters tol (float)— value of the variance of the target variable such that The parameter
value is 0.5.

_compute (*idx, **kwargs)
Returns: The value of the parameter in the provided index.

get_value (*idx, **kwargs)
Return the current value of the parameter in the provided index.

Parameters *idx (1ist) - index of the parameter to return.
Returns The current value of the parameter in the provided index.

shape
The shape of the table of parameters.

Type Returns

update (*idx, **kwargs)
Updates the value of the parameter in the provided index.

Parameters
e xidx (11ist) - index of the parameter whose number of visits has to be updated.
e target (float) - Value of the target variable;

» factor (f1loat)— Multiplicative factor for the parameter value, useful when the param-
eter depend on another parameter value.

3.11. Utils 113

Mushroom Documentation, Release 1.2.0

class mushroom.utils.variance_parameters.WindowedVarianceParameter (value,
exponen-
tial=False,
min_value=None,
tol=1.0,
win-
dow=100,
size=(1,

)

Bases: mushroom.utils.parameters.Parameter

Abstract class to implement variance-dependent parameters. A target parameter is expected. differently from
the “Variance Parameter” class the variance is computed in a window interval.

__init__ (value, exponential=False, min_value=None, tol=1.0, window=100, size=(1,))
Constructor.

Parameters

* tol (float) — value of the variance of the target variable such that the parameter value
is 0.5.

* window (int) —

_compute (*idx, **kwargs)
Returns: The value of the parameter in the provided index.

update (*idx, **kwargs)
Updates the value of the parameter in the provided index.

Parameters
* xidx (1ist)— index of the parameter whose number of visits has to be updated.
* target (float) - Value of the target variable;

* factor (f1loat)— Multiplicative factor for the parameter value, useful when the param-
eter depend on another parameter value.

__call__ (*dx, **kwargs)
Update and return the parameter in the provided index.

Parameters *idx (1ist)— index of the parameter to return.
Returns The updated parameter in the provided index.

get_value (*idx, **kwargs)
Return the current value of the parameter in the provided index.

Parameters *idx (1ist)— index of the parameter to return.
Returns The current value of the parameter in the provided index.

shape
The shape of the table of parameters.

Type Returns

114 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

class mushroom.utils.variance_parameters.WindowedVarianceIncreasingParameter (value,

ex-
po-

nen-

tial=False,
min_value=None,
tol=1.0,

win-

dow=100,
size=(1,

)

Bases: mushroom.utils.variance_parameters.WindowedVarianceParameter

Class implementing a parameter that decreases with the target variance, where the variance is computed in a
fixed length window.

__call__ (*dx, **kwargs)
Update and return the parameter in the provided index.

Parameters *idx (1ist) - index of the parameter to return.
Returns The updated parameter in the provided index.

__init__ (value, exponential=False, min_value=None, tol=1.0, window=100, size=(1,))
Constructor.

Parameters

* tol (float) — value of the variance of the target variable such that the parameter value
is 0.5.

e window (int)—

_compute (*idx, **kwargs)
Returns: The value of the parameter in the provided index.

get_value (*idx, **kwargs)
Return the current value of the parameter in the provided index.

Parameters *idx (1ist) - index of the parameter to return.
Returns The current value of the parameter in the provided index.

shape
The shape of the table of parameters.

Type Returns

update (*idx, **kwargs)
Updates the value of the parameter in the provided index.

Parameters
e xidx (11ist)—index of the parameter whose number of visits has to be updated.
* target (float) - Value of the target variable;

» factor (float)— Multiplicative factor for the parameter value, useful when the param-
eter depend on another parameter value.

3.11. Utils 115

Mushroom Documentation, Release 1.2.0

3.11.16 Viewer

class mushroom.utils.viewer.ImageViewer (size, dt)
Bases: object

Interface to pygame for visualizing plain images.

__init__ (size, dt)
Constructor.

Parameters
* size ([list, tuple])-size of the displayed image;
e dt (float) — duration of a control step.

display (img)
Display given frame.

Parameters img — image to display.

class mushroom.utils.viewer.Viewer (env_width, env_height, width=500, height=500, back-
ground=(0, 0, 0))
Bases: object

Interface to pygame for visualizing mushroom native environments.

__init__ (env_width, env_height, width=500, height=500, background=(0, 0, 0))
Constructor.

Parameters
* env_width (int)— The x dimension limit of the desired environment;
* env_height (int) — The y dimension limit of the desired environment;
e width (int, 500)- width of the environment window;
* height (int, 500)- height of the environment window;
* background (tuple, (0, 0, 0))-background color of the screen.

screen
Property.

Returns The screen created by this viewer.

size
Property.

Returns The size of the screen.

line (start, end, color=(255, 255, 255), width=1)
Draw a line on the screen.

Parameters
e start (np.ndarray) — starting point of the line;
* end (np.ndarray) — end point of the line;
e color (tuple (255, 255, 255))— color of the line;
e width (int, I)- width of the line.

square (center, angle, edge, color=(255, 255, 255), width=0)
Draw a square on the screen and apply a roto-translation to it.

116 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

Parameters
* center (np.ndarray) — the center of the polygon;
* angle (float) - the rotation to apply to the polygon;
* edge (float) —length of an edge;
e color (tuple, (255, 255, 255))—the color of the polygon;
e width (int, 0)- the width of the polygon line, O to fill the polygon.

polygon (center, angle, points, color=(255, 255, 255), width=0)
Draw a polygon on the screen and apply a roto-translation to it.

Parameters
* center (np.ndarray) — the center of the polygon;
* angle (float) - the rotation to apply to the polygon;
* points (11ist) - the points of the polygon w.r.t. the center;
e color (tuple, (255, 255, 255))—the color of the polygon;
* width (int, 0)- the width of the polygon line, O to fill the polygon.

circle (center, radius, color=(255, 255, 255), width=0)
Draw a circle on the screen.

Parameters
* center (np.ndarray) — the center of the circle;
e radius (float) — the radius of the circle;
e color (tuple, (255, 255, 255))—the color of the circle;
e width (int, 0)- the width of the circle line, O to fill the circle.

arrow_head (center, scale, angle, color=(255, 255, 255))
Draw an harrow head.

Parameters
* center (np.ndarray) — the position of the arrow head;
* scale (float) - scale of the arrow, correspond to the length;
* angle (float) — the angle of rotation of the angle head;
e color (tuple, (255, 255, 255)) - the color of the arrow.

force_arrow (center, direction, force, max_force, max_length, color=(255, 255, 255), width=1)
Draw a torque arrow, i.e. a circular arrow representing a torque. The radius of the arrow is directly
proportional to the torque value.

Parameters
* center (np.ndarray) — the point where the force is applied;
e direction (np.ndarray) - the direction of the force;
» force (float) - the applied force value;
* max_ force (float) - the maximum force value;
* max_length (float) — the length to use for the maximum force;

e color (tuple, (255, 255, 255))—the color of the arrow;

3.11. Utils 117

Mushroom Documentation, Release 1.2.0

e width (int, 1I1)- the width of the force arrow.

torque_arrow (center, torque, max_torque, max_radius, color=(255, 255, 255), width=1)
Draw a torque arrow, i.e. a circular arrow representing a torque. The radius of the arrow is directly
proportional to the torque value.

Parameters
* center (np.ndarray) — the point where the torque is applied;
* torque (float) —the applied torque value;
* max_torque (float) - the maximum torque value;
* max_radius (float) — the radius to use for the maximum torque;
e color (tuple, (255, 255, 255)) - the color of the arrow;
e width (int, I)- the width of the torque arrow.

background_image (img)
Use the given image as background for the window, rescaling it appropriately.

Parameters img — the image to be used.

function (x_s, x_e, f, n_points=100, width=1, color=(255, 255, 255))
Draw the graph of a function in the image.

Parameters
* x_s (float) - starting x coordinate;
¢ x_e (float) - final x coordinate;
* f (function) - the function that maps x coorinates into y coordinates;

* n_points (int, 100)- the number of segments used to approximate the function to
draw;

e width (int, I1)- thw width of the line drawn;
e color (tuple, (255,255,255))— the color of the line.

display (s)
Display current frame and initialize the next frame to the background color.

Parameters s — time to wait in visualization.

close ()
Close the viewer, destroy the window.

3.12 How to make a simple experiment

The main purpose of Mushroom is to simplify the scripting of RL experiments. A standard example of a script to run
an experiment in Mushroom, consists of:

* an initial part where the setting of the experiment are specified;

* amiddle part where the experiment is run;

« afinal part where operations like evaluation, plot and save can be done.
A RL experiment consists of:

* a MDP;

118 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

* an agent;
* acore.

A MDP is the problem to be solved by the agent. It contains the function to move the agent in the environment
according to the provided action. The MDP can be simply created with:

import numpy as np
from sklearn.ensemble import ExtraTreesRegressor

from mushroom.algorithms.value import FQI

from mushroom.core import Core

from mushroom.environments import CarOnHill
from mushroom.policy import EpsGreedy

from mushroom.utils.dataset import compute_J
from mushroom.utils.parameters import Parameter

mdp = CarOnHill ()

A Mushroom agent is the algorithm that is run to learn in the MDP. It consists of a policy approximator and of the
methods to improve the policy during the learning. It also contains the features to extract in the case of MDP with
continuous state and action spaces. An agent can be defined this way:

Policy
epsilon = Parameter (value=1.)
pli = EpsGreedy (epsilon=epsilon)

Approximator

approximator_params = dict (input_shape=mdp.info.observation_space.shape,
n_actions=mdp.info.action_space.n,
n_estimators=50,
min_samples_split=5,
min_samples_leaf=2)

approximator = ExtraTreesRegressor

Agent
agent = FQI (approximator, pi, mdp.info, n_iterations=20,
approximator_params=approximator_params)

This piece of code creates the policy followed by the agent (e.g. e-greedy) with ¢ = 1. Then, the policy approximator
is created specifying the parameters to create it and the class (in this case, the Ext raTreesRegressor class of
scikit-learn is used). Eventually, the agent is created calling the algorithm class and providing the approximator and
the policy, together with parameters used by the algorithm.

To run the experiment, the core module has to be used. This module requires the agent and the MDP object and
contains the function to learn in the MDP and evaluate the learned policy. It can be created with:

’core = Core (agent, mdp)

Once the core has been created, the agent can be trained collecting a dataset and fitting the policy:

’core.learn(n_episodes:looo, n_episodes_per_£fit=1000)

In this case, the agent’s policy is fitted only once, after that 1000 episodes have been collected. This is a common
practice in batch RL algorithms such as FQI where, initially, samples are randomly collected and then the policy is
fitted using the whole dataset of collected samples.

Eventually, some operations to evaluate the learned policy can be done. This way the user can, for instance, compute
the performance of the agent through the collected rewards during an evaluation run. Fixing € = 0, the greedy policy

3.12. How to make a simple experiment 119

Mushroom Documentation, Release 1.2.0

is applied starting from the provided initial states, then the average cumulative discounted reward is returned.

pil.set_epsilon (Parameter (0.))
initial_state = np.array([[-.5, 0.11)
dataset = core.evaluate (initial_states=initial_state)

print (compute_J (dataset, gamma=mdp.info.gamma))

3.13 How to make an advanced experiment

Continuous MDPs are a challenging class of problems to solve in RL. In these problems, a tabular regressor is not
enough to approximate the Q-function, since there are an infinite number of states/actions. The solution to solve them
is to use a function approximator (e.g. neural network) fed with the raw values of states and actions. In the case a
linear approximator is used, it is convenient to enlarge the input space with the space of non-linear features extracted
from the raw values. This way, the linear approximator is often able to solve the MDPs, despite its simplicity. Many
RL algorithms rely on the use of a linear approximator to solve a MDP, therefore the use of features is very important.
This tutorial shows how to solve a continuous MDP in Mushroom using an algorithm that requires the use of a linear
approximator.

Initially, the MDP and the policy are created:

import numpy as np

from mushroom.algorithms.value import SARSALambdaContinuous

from mushroom.approximators.parametric import LinearApproximator
from mushroom.core import Core

from mushroom.environments import =«

from mushroom. features import Features

from mushroom.features.tiles import Tiles

from mushroom.policy import EpsGreedy

from mushroom.utils.callbacks import CollectDataset

from mushroom.utils.parameters import Parameter

MDP
mdp = Gym(name='MountainCar-v0', horizon=np.inf, gamma=1.)

Policy
epsilon = Parameter (value=0.)
pli = EpsGreedy (epsilon=epsilon)

This is an environment created with the Mushroom interface to the OpenAl Gym library. Each environment offered
by OpenAl Gym can be created this way simply providing the corresponding id in the name parameter, except for the
Atari that are managed by a separate class. After the creation of the MDP, the tiles features are created:

O-function approximator

n_tilings = 10

tilings = Tiles.generate(n_tilings, [10, 10],
mdp.info.observation_space.low,
mdp.info.observation_space.high)

features = Features(tilings=tilings)

approximator_params = dict (input_shape=(features.size,),
output_shape=(mdp.info.action_space.n,),
n_actions=mdp.info.action_space.n)

120 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

In this example, we use sparse coding by means of tiles features. The generate method generates n_tilings
grids of 10x10 tilings evenly spaced (the way the tilings are created is explained in “Reinforcement Learning: An
Introduction”, Sutton & Barto, 1998). Eventually, the grid is passed to the Features factory method that returns the
features class.

Mushroom offers other type of features such a radial basis functions and polynomial features. The former have also
a faster implementation written in Tensorflow that can be used transparently.

Then, the agent is created as usual, but this time passing the feature to it. It is important to notice that the learning rate
is divided by the number of tilings for the correctness of the update (see “Reinforcement Learning: An Introduction”,
Sutton & Barto, 1998 for details). After that, the learning is run as usual:

Agent
learning_rate = Parameter (.l / n_tilings)

agent = SARSALambdaContinuous (LinearApproximator, pi, mdp.info,
approximator_params=approximator_params,
learning_rate=learning_rate,
lambda_coeff=.9, features=features)

Algorithm

collect_dataset = CollectDataset ()

callbacks = [collect_dataset]

core = Core(agent, mdp, callbacks=callbacks)

Train
core.learn(n_episodes=100, n_steps_per_fit=1)

To visualize the learned policy the rendering method of OpenAl Gym is used. To activate the rendering in the envi-
ronments that supports it, it is necessary to set render=True.

Evaluate
core.evaluate (n_episodes=1, render=True)

3.14 How to create a regressor

Mushroom offers a high-level interface to build function regressors. Indeed, it transparently manages regressors
for generic functions and Q-function regressors. The user should not care about the low-level implementation of
these regressors and should only use the Regressor interface. This interface creates a Q-function regressor or a
GenericRegressor depending on whether the n_act ions parameter is provided to the constructor or not.

3.14.1 Usage of the Regressor interface
When the action space of RL problems is finite and the adopted approach is value-based, we want to compute
the Q-function of each action. In Mushroom, this is possible using:
* a Q-function regressor with a different approximator for each action (ActionRegressor);
* asingle Q-function regressor with a different output for each action (QRegressor).
The QRegressor is suggested when the number of discrete actions is high, due to memory reasons.

The user can create create a QRegressor or an ActionRegressor, setting the output_shape parameter of
the Regressor interface. If it is set to (1,), an ActionRegressor is created; otherwise if it is set to the number
of discrete actions, a QRegressor is created.

3.14. How to create a regressor 121

Mushroom Documentation, Release 1.2.0

3.14.2 Example

Initially, the MDP, the policy and the features are created:

import numpy as np

from mushroom.algorithms.value import SARSALambdaContinuous

from mushroom.approximators.parametric import LinearApproximator
from mushroom.core import Core

from mushroom.environments import =«

from mushroom. features import Features

from mushroom.features.tiles import Tiles

from mushroom.policy import EpsGreedy

from mushroom.utils.callbacks import CollectDataset

from mushroom.utils.parameters import Parameter

MDP
mdp = Gym(name='MountainCar-v0', horizon=np.inf, gamma=1.)

Policy
epsilon = Parameter (value=0.)
pli = EpsGreedy (epsilon=epsilon)

O-function approximator

n_tilings = 10

tilings = Tiles.generate(n_tilings, [10, 10],
mdp.info.observation_space.low,
mdp.info.observation_space.high)

features = Features(tilings=tilings)
Agent
learning_rate = Parameter (.l / n_tilings)

The following snippet, sets the output shape of the regressor to the number of actions, creating a QRegressor:

approximator_params = dict (input_shape=(features.size,),
output_shape=(mdp.info.action_space.n,),
n_actions=mdp.info.action_space.n)

If you prefer to use an Act ionRegressor, simply set the number of actions to (1,):

approximator_params = dict (input_shape=(features.size,),
output_shape=(1,),
n_actions=mdp.info.action_space.n)

Then, the rest of the code fits the approximator and runs the evaluation rendering the behaviour of the agent:

agent = SARSALambdaContinuous (LinearApproximator, pi, mdp.info,
approximator_params=approximator_params,
learning_rate=learning_rate,
lambda_coeff= .9, features=features)

Algorithm

collect_dataset = CollectDataset ()

callbacks = [collect_dataset]

core = Core(agent, mdp, callbacks=callbacks)

(continues on next page)

122 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

(continued from previous page)

Train
core.learn(n_episodes=100, n_steps_per_fit=1)

Evaluate
core.evaluate (n_episodes=1, render=True)

3.14.3 Generic regressor
Whenever the n_act ions parameter is not provided, the Regressor interface creates a GenericRegressor.

This regressor can be used for general purposes and it is more flexible to be used. It is commonly used in policy search
algorithms.

Example

Create a dataset of points distributed on a line with random gaussian noise.

import numpy as np
from matplotlib import pyplot as plt

from mushroom.approximators import Regressor

from mushroom.approximators.parametric import LinearApproximator
x = np.arange (10) .reshape (-1, 1)

intercept = 10

noise = np.random.randn (10, 1) * 1
y = 2 % x + intercept + noise

To fit the intercept, polynomial features of degree 1 are created by hand:

phi = np.concatenate((np.ones(10) .reshape (-1, 1), x), axis=1)

The regressor is then created and fit (note that n_actions is not provided):

regressor = Regressor (LinearApproximator,
input_shape=(2,),
output_shape=(1,))

regressor.fit (phi, v)

Eventually, the approximated function of the regressor is plotted together with the target points. Moreover, the weights
and the gradient in point 5 of the linear approximator are printed.

print ('Weights: ' + str(regressor.get_weights()))
print ('Gradient: ' + str(regressor.diff (np.array([[5.]1]1))))

plt.scatter (x, V)
plt.plot (x, regressor.predict (phi))
plt.show ()

3.14. How to create a regressor 123

Mushroom Documentation, Release 1.2.0

3.15 How to make a deep RL experiment

The usual script to run a deep RL experiment does not significantly differ from the one for a shallow RL experiment.
This tutorial shows how to solve Atari games in Mushroom using DON, and how to solve MuJoCo tasks using DDPG.
This tutorial will not explain some technicalities that are already described in the previous tutorials, and will only
briefly explain how to run deep RL experiments. Be sure to read the previous tutorials before starting this one.

3.15.1 Solving Atari with DQN

This script runs the experiment to solve the Atari Breakout game as described in the DQN paper “Human-level control
through deep reinforcement learning”, Mnih V. et al., 2015). We start creating the neural network to learn the action-
value function:

import numpy as np

import torch

import torch.nn as nn

import torch.optim as optim
import torch.nn.functional as F

from mushroom.algorithms.value import DON

from mushroom.approximators.parametric import TorchApproximator
from mushroom.core import Core

from mushroom.environments import Atari

from mushroom.policy import EpsGreedy

from mushroom.utils.dataset import compute_metrics

from mushroom.utils.parameters import LinearParameter, Parameter

class Network (nn.Module) :
n_features = 512

def _ _init__ (self, input_shape, output_shape, »xkwargs):
super () .__init__ ()

n_input = input_shape[0]
n_output = output_shape[0]

self._hl = nn.Conv2d(n_input, 32, kernel_size=8, stride=4)
self._h2 = nn.Conv2d (32, 64, kernel_size=4, stride=2)
self._h3 = nn.Conv2d (64, 64, kernel_size=3, stride=1)
self._h4 = nn.Linear (3136, self.n_features)

self._h5 = nn.Linear (self.n_features, n_output)

nn.init.xavier_uniform_(self._hl.weight,
gain=nn.init.calculate_gain('relu'))
nn.init.xavier_uniform_(self._h2.weight,
gain=nn.init.calculate_gain('relu'))
nn.init.xavier_uniform_(self._h3.weight,
gain=nn.init.calculate_gain('relu'))
nn.init.xavier_uniform_(self._h4.weight,
gain=nn.init.calculate_gain('relu'))
nn.init.xavier_uniform_(self._h5.weight,
gain=nn.init.calculate_gain('linear'))

def forward(self, state, action=None) :

(continues on next page)

124 Chapter 3. Download and installation

https://gym.openai.com/envs/#atari/
https://github.com/deepmind/dm_control/

Mushroom Documentation, Release 1.2.0

(continued from previous page)

.relu(self._hl
.relu(self._h2

F tate.float () / 255.))
F

F.relu(self._h3

F

s

s
h))

h))

h.view(-1, 3136)))

.relu(self._hi4
elf._h5(h)

[loln= = = i)
Il

if action is None:
return g
else:
g_acted = torch.squeeze(g.gather(l, action.long()))

return g_acted

Note that the forward function may return all the action-values of state, or only the one for the provided action.
This network will be used later in the script. Now, we define useful functions, set some hyperparameters, and create
the mdp and the policy pi:

def print_epoch (epoch) :
print ("#4#4HEHEHEE AR HH A A E RS H S A)
print ('"Epoch: ', epoch)

def get_stats(dataset):

score = compute_metrics (dataset)
print (('min_reward: , max_reward: , mean_reward: , !
' games_completed: ' % score))

return score

scores = list ()

optimizer = dict ()
optimizer['class'] = optim.Adam
optimizer['params'] = dict (lr=.00025)

Settings

width = 84

height = 84

history_length = 4
train_frequency = 4
evaluation_frequency = 250000
target_update_frequency = 10000
initial_replay_size = 50000
max_replay_size = 500000
test_samples = 125000
max_steps = 50000000

MDP
mdp = Atari ('BreakoutDeterministic-v4', width, height, ends_at_life=True,
history_length=history_length, max_no_op_actions=30)

Policy
epsilon = LinearParameter (value=1.,
threshold_value=.1,

(continues on next page)

3.15. How to make a deep RL experiment 125

Mushroom Documentation, Release 1.2.0

(continued from previous page)

n=1000000)
epsilon_test = Parameter (value=.005)
epsilon_random = Parameter (value=1)
pi = EpsGreedy (epsilon=epsilon_random)

Differently from the literature, we use Adam as the optimizer.

Then, the approximator:

Approximator

input_shape = (history_length, height, width)

approximator_params = dict (
network=Network,
input_shape=input_shape,
output_shape=(mdp.info.action_space.n,),
n_actions=mdp.info.action_space.n,
n_features=Network.n_features,
optimizer=optimizer,
loss=F.smooth_11_loss

approximator = TorchApproximator

Finally, the agent and the core:

Agent

algorithm_params = dict (
batch_size=32,
target_update_frequency=target_update_frequency // train_frequency,
replay_memory=None,
initial_replay_size=initial_replay_size,
max_replay_size=max_replay_size

agent = DON (approximator, pi, mdp.info,
approximator_params=approximator_params,
x*xalgorithm_params)

Algorithm
core = Core(agent, mdp)

Eventually, the learning loop is performed. As done in literature, learning and evaluation steps are alternated:

RUN

Fill replay memory with random dataset

print_epoch (0)

core.learn(n_steps=initial_replay_size,
n_steps_per_fit=initial_replay_size)

Evaluate initial policy
pi.set_epsilon(epsilon_test)
mdp.set_episode_end (False)

dataset = core.evaluate(n_steps=test_samples)
scores.append (get_stats (dataset))

for n_epoch in range(l, max_steps // evaluation_frequency + 1):

(continues on next page)

126 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

(continued from previous page)

print_epoch (n_epoch)

print ('- Learning:'")

learning step

pi.set_epsilon(epsilon)

mdp . set_episode_end (True)

core.learn (n_steps=evaluation_frequency,
n_steps_per_fit=train_frequency)

print ('- Evaluation:')

evaluation step
pi.set_epsilon(epsilon_test)
mdp.set_episode_end (False)

dataset = core.evaluate (n_steps=test_samples)
scores.append (get_stats (dataset))

3.15.2 Solving MuJoCo with DDPG

This script runs the experiment to solve the Walker-Stand MuJoCo task, as implemented in MuJoCo. As with DON,

we start creating the neural networks. For DDPG, we need an actor and a critic network:

import numpy as np

import torch

import torch.nn as nn

import torch.optim as optim
import torch.nn.functional as F

from mushroom.algorithms.actor_critic import DDPG

from mushroom.core import Core

from mushroom.environments.dm control_ env import DMControl
from mushroom.policy import OrnsteinUhlenbeckPolicy

from mushroom.utils.dataset import compute_J

class CriticNetwork (nn.Module) :

def _ _init__ (self, input_shape, output_shape, n_features, xxkwargs):

super () .__init__ ()

n_input = input_shape[-1]
n_output = output_shape[0]

self._hl = nn.Linear (n_input, n_features)
self._h2 nn.Linear (n_features, n_features)
self._h3 nn.Linear (n_features, n_output)

nn.init.xavier_uniform_(self._hl.weight,
gain=nn.init.calculate_gain('relu'))

nn.init.xavier_uniform_(self._h2.weight,
gain=nn.init.calculate_gain('relu'))

nn.init.xavier_uniform_(self._h3.weight,
gain=nn.init.calculate_gain('linear'))

def forward(self, state, action):
state_action = torch.cat ((state.float (), action.float()), dim=1)
featuresl F.relu(self._hl(state_action))

(continues on next page)

3.15. How to make a deep RL experiment

127

https://github.com/deepmind/dm_control/

Mushroom Documentation, Release 1.2.0

(continued from previous page)

features?2 = F.relu(self._h2 (featuresl))
g = self._h3(features2)

return torch.squeeze (q)

class ActorNetwork (nn.Module) :
def _ _init__ (self, input_shape, output_shape, n_features, x»xkwargs):
super (ActorNetwork, self).__init__ ()

n_input = input_shape[-1]
n_output = output_shape[0]

self._hl = nn.Linear (n_input, n_features)
self._h2 nn.Linear (n_features, n_features)
self._h3 = nn.Linear (n_features, n_output)

nn.init.xavier_uniform_(self._hl.weight,
gain=nn.init.calculate_gain('relu'))

nn.init.xavier_uniform_(self._h2.weight,
gain=nn.init.calculate_gain('relu'))

nn.init.xavier_uniform_(self._h3.weight,
gain=nn.init.calculate_gain('linear'))

def forward(self, state):

featuresl = F.relu(self._hl (torch.squeeze(state, 1).float()))
features?2 = F.relu(self._ _h2 (featuresl))

a = self. _h3(features?2)

return a

We create the mdp, the policy, and set some hyperparameters:

MDP

horizon = 500

gamma = 0.99

gamma_eval = 1.

mdp = DMControl ('walker', 'stand', horizon, gamma)

Policy
policy_class = OrnsteinUhlenbeckPolicy
policy_params = dict (sigma=np.ones(l) * .2, theta=.15, dt=le-2)

Settings
initial_replay_size = 500
max_replay_size = 5000
batch_size = 200
n_features = 80

tau = .001

Note that the policy is not instatiated in the script, since in DDPG the instatiation is done inside the algorithm con-
structor.

We create the actor and the critic approximators:

Approximator
actor_input_shape = mdp.info.observation_space.shape

(continues on next page)

128 Chapter 3. Download and installation

Mushroom Documentation, Release 1.2.0

(continued from previous page)

actor_params = dict (network=ActorNetwork,
n_features=n_features,
input_shape=actor_input_shape,
output_shape=mdp.info.action_space.shape)

actor_optimizer = {'class': optim.Adam,
'params': {'lr': .001}}
critic_input_shape = (actor_input_shape[0] + mdp.info.action_space.shapel[0],)
critic_params = dict (network=CriticNetwork,
optimizer={'class': optim.Adam,
'params': {'lr': .001}},

loss=F.mse_loss,
n_features=n_features,
input_shape=critic_input_shape,
output_shape=(1,))

Finally, we create the agent and the core:

Agent

agent = DDPG(mdp.info, policy_class, policy_params,
batch_size, initial_replay_size, max_replay_size,
tau, critic_params, actor_params, actor_optimizer)

Algorithm
core = Core(agent, mdp)

As in DQN, we alternate learning and evaluation steps:

Fill the replay memory with random samples
core.learn(n_steps=initial_replay_size, n_steps_per_fit=initial_replay_size)

RUN

n_epochs = 40
n_steps = 1000
n_steps_test = 2000

dataset = core.evaluate (n_steps=n_steps_test, render=False)
J = compute_J (dataset, gamma_eval)
print ('J: ', np.mean(J))

for n in range (n_epochs) :
print ('Epoch: ', n)
core.learn (n_steps=n_steps, n_steps_per_fit=1)

dataset = core.evaluate(n_steps=n_steps_test, render=False)
J = compute_J (dataset, gamma_eval)
print ('J: ', np.mean(J))

3.15. How to make a deep RL experiment 129

Mushroom Documentation, Release 1.2.0

130 Chapter 3. Download and installation

Python Module Index

m

mushroom.

9
mushroom
12

mushroom.
mushroom.

23
mushroom
20

mushroom.
mushroom.
mushroom.

mushroom
43

mushroom.

44

mushroom.

mushroom

mushroom.
mushroom.
mushroom.
mushroom.
mushroom.
mushroom.

55

mushroom.
mushroom.
mushroom.

71

mushroom.

72

mushroom.

73

mushroom.
mushroom.
mushroom.

61

mushroom.

mushroom.environments.mujoco, 65

puddle_world, 68

algorithms.actor_critic.classicld8REeoBrepYEronments.
mushroom.environments.segway, 69
.algorithms.actor_critic.deep_ac@B§EE?@@i%FVironments'Ship—Steering’70
mushroom. features._implementations.features_implem
algorithms.agent, 6 75
algorithms.policy_search.black_BBghegenmigatysgs-pbasis. fourier, 75
mushroom. features.basis.gaussian_rbf,
.algorithms.policy_search.policy_gradiéﬁ%,
mushroom. features.basis.polynomial, 77
algorithms.value.batch_td, 35 mushroom. features.features, 74
algorithms.value.dqn, 37 mushroom. features.tensors.gaussian_tensor,
algorithms.value.td,?25 78
.approximators.parametric.linearWUShroom~features'tlles-tlles’78
mushroom.policy.deterministic_policy,
approximators.parametric.torch_approxf%%tor
mushroom.policy.gaussian_policy, 82
approximators.regressor, 41 mushroom.policy.noise_policy, 87
.core.core, 8 mushroom.policy.policy, 79
distributions.distribution,46 Mmushroom.policy.td policy, 88
distributions.gaussian, 47 mushroom.policy.torch_policy, 91
environments.atari, 5l mushroom.solvers.car_on_hill, 95
environments.car_on_hill, 54 mushroom.solvers.dynamic_programming,
environments.cart_pole, 62 95
environments.dm control_env, mushroom.utils.angles, 96
mushroom.utils.callbacks, 96
environments.environment, 6 mushroom.utils.dataset, 98
environments.finite_mdp, 56 mushroom.utils.eligibility_trace, 99
environments.generators.grid_woB¥ghroom.utils.features, 100
mushroom.utils.folder, 101
environments.generators.simple_@Hﬁ@ﬁ?om'Utils'minibatChes’101
mushroom.utils.numerical_gradient, 101
environments.generators.taxi, Mushroom.utils.parameters, 102
mushroom.utils.replay_memory, 105
environments.grid_world, 57 mushroom.utils.spaces, 107
environments.gym_env, 60 mushroom.utils.table, 108
environments.inverted_pendulum,musmfoom'Utils'tO]fCh’109
mushroom.utils.value_functions, 110
environments.lqr, 63 mushroom.utils.variance_parameters, 111
mushroom.utils.viewer, 116

131

Mushroom Documentation, Release 1.2.0

132 Python Module Index

Index

Sym bols __call__ () (mushroom.policy.td_policy.Mellowmax
__call__ () (mushroom.approximators.regressor.Regressor method), 91

method), 42 __call_ () (mushroom.policy.td_policy. TDPolicy
call () (mushroom.distributions.distribution.Distribution method), 89

method), 46 __call__ () (mushroom.policy.torch_policy.GaussianTorchPolicy
_ call__ () (mushroom.distributions.gaussian. GaussiamCholeskylﬂ%‘?V?l?)gt}o?z4

method), 50 __call__ () (mushroom.policy.torch_policy.TorchPolicy
__call__ () (mushroom.distributions.gaussian. GaussianDiagonalﬂ?ﬁt/mg)io%z

method), 49 _call__ () (mushroom.utils.callbacks.Callback

__call__ () (mushroom.distributions.gaussian. GaussianDistributid%ethOd)’ 96
method), 47 _ call__ () (mushroom.utils.callbacks.CollectDataset

__call__ () (mushroom.features.basis.fourier. FourierBasis method), 97
method), 76 __call__ () (mushroom.utils.callbacks.CollectMaxQ

__call__ () (mushroom.features.basis.gaussian_rbf GaussianRBF Method), 97

method), 76 __call__ () (mushroom.utils.callbacks.CollectParameters
__call_ () (mushroom.features.basis. polynomial.PolynomialBasismethOd)’ 97

method), 77 —call_ () (mushroom.utils.callbacks.CollectQ
_call__ () (mushroom.features.tiles.tiles. Tiles method), 97

method), 78 __call__ () (mushroom.utils.parameters.AdaptiveParameter
__call__ () (mushroom.policy.deterministic_policy. DeterministicPBlgiod), 104

method), 81 __call__ () (mushroom.utils.parameters.ExponentialParameter

__call__ () (mushroom.policy.gaussian _policy.DiagonalGaussianPZﬁf@ﬂd)’ 104

__call__ () (mushroom.utils.parameters.LinearParameter

method), 83
__call__ () (mushroom.policy.gaussian_policy.GaussianPolicy ~ Method), 103
method), 82 _call__ () (mushroom.utils.parameters.Parameter

__call__ () (mushroom.policy.gaussian_policy.StateLogStdGaussitlEhady 102
method), 86 __call__ () (mushroom.utils.variance_parameters.VarianceDecreasingl

__call__ () (mushroom.policy.gaussian_policy.StateStdGaussianPOIod), 113
method), 85 __call__ () (mushroom.utils.variance_parameters.VariancelncreasingP

__call__ () (mushroom.policy.noise _policy.OrnsteinUhlenbeckPollZ’ﬁthOd)’ 112
method), 87 __call__ () (mushroom.utils.variance_parameters.VarianceParameter

__call__ () (mushroom.policy.policy.ParametricPolicy method), 112
method), 80 __call__ () (mushroom.utils.variance_parameters.WindowedVarianceln

_ call__ () (mushroom.policy.policy.Policy method), method), 115
79 __call__ () (mushroom.utils.variance_parameters.WindowedVariancePc

__call__ () (mushroom.policy.td_policy.Boltzmann method), 114
method), 90 __init__ (mushroom.distributions.distribution.Distribution

__call__ () (mushroom.policy.td_policy.EpsGreedy attribute), 47
method), 89 __init___ (mushroom.policy.policy.ParametricPolicy

attribute), 80

133

Mushroom Documentation, Release 1.2.0

__init__ (mushroom.policy.policy.Policy attribute), 79 method), 28
__init__ () (mushroom.algorithms.actor_critic.classic_actorndritic.) BbsGrddm.algorithms.value.td. RLearning

method), 9 method), 30
__init__ () (mushroom.algorithms.actor_critic.classic_actorndritic. Stpdhasstod@m.algorithms.value.td. RQLearning
method), 10 method), 32
__init__ () (mushroom.algorithms.actor_critic.classic_actorndritic. StpchamiadkiodWiilgorithms.value.td. SARSA
method), 11 method), 25
__init__ () (mushroom.algorithms.actor_critic.deep_actor ianitic.A2C) (mushroom.algorithms.value.td.SARSALambda
method), 12 method), 26
__init__ () (mushroom.algorithms.actor_critic.deep_actor ianitic. DDFGmushroom.algorithms.value.td.SARSA LambdaContinuous
method), 13 method), 33
__init__ () (mushroom.algorithms.actor_critic.deep_actor ianitic. DeepAfiushroom.algorithms.value.td.SpeedyQLearning
method), 12 method), 30
__init__ () (mushroom.algorithms.actor_critic.deep_actor icnitic.PPQ (mushroom.algorithms.value.td. TrueOnlineSARSA Lambda
method), 19 method), 34
__init__ () (mushroom.algorithms.actor_critic.deep_actor ianitic.SAC) (mushroom.algorithms.value.td. WeightedQLearning
method), 16 method), 31
__init__ () (mushroom.algorithms.actor_critic.deep_actor ianitic. TD3) (mushroom.approximators.parametric.linear.LinearApproxi
method), 15 method), 43
__init__ () (mushroom.algorithms.actor_critic.deep_actor icnitic. TRPAmushroom.approximators.parametric.torch_approximator. 1
method), 18 method), 44
__init__ () (mushroom.algorithms.agent.Agent __init__ () (mushroom.approximators.regressor.Regressor
method), 6 method), 41
__init__ () (mushroom.algorithms.policy_search.black_boxi nptimizaidmB€hPdom.core.core.Core method), 8
method), 24 __init__ () (mushroom.distributions.gaussian.GaussianCholeskyDistril
__init__ () (mushroom.algorithms.policy_search.black_box_optimizattiod)REPS
method), 25 __init__ () (mushroom.distributions.gaussian.GaussianDiagonalDistril
__init__ () (mushroom.algorithms.policy_search.black_box_optimizttiord)R¥ER
method), 23 __init__ () (mushroom.distributions.gaussian.GaussianDistribution
__init__ () (mushroom.algorithms.policy_search.policy_gradient. iPOMIDP7
method), 21 __init_ () (mushroom.environments.atari.Atari

__init__ () (mushroom.algorithms.policy_search.policy_gradient. REETNIAY)RGE
method), 20 __init__ () (mushroom.environments.atari.LazyFrames
__init__ () (mushroom.algorithms.policy_search.policy_gradient.eNAdd), 53

method), 22

__init__ () (mushroom.algorithms.value.batch_td.DoubleF QI

method), 36

__init__ () (mushroom.algorithms.value.batch_td.FQI

method), 35

__init__ () (mushroom.algorithms.value.batch_td.LSPI

method), 36

__init__ () (mushroom.algorithms.value.dgn.AveragedDON

method), 39

__init__ () (mushroom.environments.atari.MaxAndSkip

method), 51

_ init__ () (mushroom.environments.car_on_hill. CarOnHill
method), 54

__init__ () (mushroom.environments.cart_pole.CartPole
method), 62

__init__ () (mushroom.environments.dm_control_env.DMControl

method), 55

__init__ () (mushroom.environments.environment.Environment

__init__ () (mushroom.algorithms.value.dgn.Categorical DON method), 7

method), 40 __init__ () (mushroom.environments.environment.MDPInfo
__init__ () (mushroom.algorithms.value.dgn.DQN method), 6

method), 37 __init__ () (mushroom.environments.finite_mdp.FiniteMDP
__init__ () (mushroom.algorithms.value.dgn.DoubleDQN method), 56

method), 38 __init__ () (mushroom.environments.grid_world.AbstractGridWorld
__init__ () (mushroom.algorithms.value.td. DoubleQLearning method), 57

method), 29 __init__ () (mushroom.environments.grid_world.GridWorld
__init__ () (mushroom.algorithms.value.td. ExpectedSARSA method), 58

method), 27 __init__ () (mushroom.environments.grid_world. GridWorldVanHasselt
__init__ () (mushroom.algorithms.value.td.QLearning method), 59

134

Index

Mushroom Documentation, Release 1.2.0

__init__ () (mushroom.environments.gym_env.Gym __init__ () (mushroom.utils.callbacks.CollectQ
method), 60 method), 97

__init__ () (mushroom.environments.inverted_pendulum.InvertedPenidu{mmshroom.utils.eligibility_trace.AccumulatingTrace
method), 61 method), 100

__init__ () (mushroom.environments.lgqrLQR ___init__ () (mushroom.utils.eligibility_trace.ReplacingTrace
method), 63 method), 99

__init__ () (mushroom.environments.mujoco.MuJoCo __init___ () (mushroom.utils.parameters.AdaptiveParameter
method), 65 method), 104

__init__ () (mushroom.environments.puddle_world.PuddleWnzld () (mushroom.utils.parameters.ExponentialParameter
method), 68 method), 103

__init__ () (mushroom.environments.segway.Segway __init__ () (mushroom.utils.parameters.LinearParameter
method), 69 method), 103

__init__ () (mushroom.environments.ship_steering.ShipSteénivigc___ () (mushroom.utils.parameters.Parameter
method), 70 method), 102

__init__ () (mushroom.features.basis.fourier.FourierBasis init__ () (mushroom.utils.replay_memory.PrioritizedReplayMemory
method), 76 method), 106

__init__ () (mushroom.features.basis.gaussian_rbf.GaussianRBE __ () (mushroom.utils.replay_memory.ReplayMemory
method), 76 method), 105

__init__ () (mushroom.features.basis.polynomial. PolynomialBusis () (mushroom.utils.replay_memory.SumTree
method), 77 method), 105

__init__ () (mushroom.features.tensors.gaussian_tensor.PylovchGaussignRBiFoom.utils.spaces.Box method), 107
method), 78 __init__ () (mushroom.utils.spaces.Discrete method),

__init__ () (mushroom.features.tiles.tiles.Tiles 107
method), 78 _dinit_ () (mushroom.utils.table. EnsembleTable

__init__ () (mushroom.policy.deterministic_policy.DeterministicPalathod), 109
method), 81 _ init__ () (mushroom.utils.table.Table method), 108

__init__ () (mushroom.policy.gaussian_policy.DiagonalGaiissianPoliyy(mushroom.utils.variance_parameters.VarianceDecreasingl
method), 83 method), 113

__init__ () (mushroom.policy.gaussian_policy.GaussianPolicyit___ () (mushroom.utils.variance_parameters.VariancelncreasingP
method), 82 method), 112

__init__ () (mushroom.policy.gaussian_policy.StateLogStdGranssianPpl{eyushroom.utils.variance_parameters.VarianceParameter
method), 86 method), 111

__init__ () (mushroom.policy.gaussian_policy.StateStdGaussiarPoli¢y (mushroom.utils.variance_parameters. WindowedVarianceln
method), 84 method), 115

__init__ () (mushroom.policy.noise_policy.OrnsteinUhlenbeckPolicy() (mushroom.utils.variance_parameters. WindowedVariancePc
method), 87 method), 114

__dinit__ () (mushroom.policy.td_policy.Boltzmann __init__ () (mushroom.utils.viewer.ImageViewer
method), 90 method), 116

__init__ () (mushroom.policy.td_policy.EpsGreedy __init__ () (mushroom.utils.viewer.Viewer method),
method), 89 116

__init__ () (mushroom.policy.td_policy.Mellowmax _bound () (mushroom.environments.atari.Atari static
method), 91 method), 53

__init__ () (mushroom.policy.td_policy.TDPolicy _bound () (mushroom.environments.car_on_hill. CarOnHill
method), 88 static method), 54

__init__ () (mushroom.policy.torch_policy.GaussianTorchFoliod () (mushroom.environments.cart_pole.CartPole
method), 93 static method), 63

__init__ () (mushroom.policy.torch_policy.TorchPolicy _bound () (mushroom.environments.dm_control_env.DMControl
method), 92 static method), 56

__init__ () (mushroom.utils.callbacks.Callback _bound () (mushroom.environments.environment. Environment
method), 96 static method), 7

__init__ () (mushroom.utils.callbacks.CollectMaxQ _bound () (mushroom.environments.finite_mdp.FiniteMDP
method), 97 static method), 56

__init__ () (mushroom.utils.callbacks.CollectParameters bound () (mushroom.environments.grid_world.AbstractGridWorld
method), 97 static method), 57

Index 135

Mushroom Documentation, Release 1.2.0

_bound () (mushroom.environments.grid_world.GridWorld method), 20
static method), 58 _episode_end_update () (mush-
_bound () (mushroom.environments.grid_world. GridWorldVanHasseltom.algorithms.policy_search.policy_gradient.eNAC

static method), 59 method), 22
_bound () (mushroom.environments.gym_env.Gym _fit () (mushroom.algorithms.value.batch_td.DoubleFQI
static method), 60 method), 36

_bound () (mushroom.environments.inverted_pendulum.Invdried Pendulutmushroom.algorithms.value.batch_td. FQI

static method), 62

_bound () (mushroom.environments.lqrLOR static
method), 64
_bound () (mushroom.environments.mujoco.MuJoCo

static method), 67

_bound () (mushroom.environments.puddle_world. Puddle World

static method), 69
_bound()
static method), 70

(mushroom.environments.segway.Segway

method), 35
_fit_boosted() (mush-
room.algorithms.value.batch_td. Double FQI
method), 36
_fit_boosted() (mush-
room.algorithms.value.batch_td. FQI method),
35
_init_target () (mush-
room.algorithms.actor_critic.deep_actor_critic.c DDPG

_bound () (mushroom.environments.ship_steering.ShipSteering method), 14

static method), 71 _init_target () (mush-
_compute () (mushroom.utils.parameters. ExponentialParameter — room.algorithms.actor_critic.deep_actor_critic.SAC
method), 104 method), 17
_compute () (mushroom.utils.parameters.LinearParameterinit_target () (mush-
method), 103 room.algorithms.actor_critic.deep_actor_critic.TD3
_compute () (mushroom.utils.parameters.Parameter method), 15
method), 102 _init_update () (mush-

_compute () (mushroom.utils.variance_parameters.VarianceDecreasingPalgowedems.policy_search.policy_gradient. GPOMDP
method), 113 method), 21
_compute () (mushroom.utils.variance_parameters.Variancetvicreaspg®armeter (mush-
method), 112 room.algorithms.policy_search.policy_gradient. REINFORCE
_compute () (mushroom.utils.variance_parameters.VarianceParametethod), 20
method), 111 _init_update () (mush-
_compute () (mushroom.utils.variance_parameters. WindowedVarianeveinctgositighaeotietersearch.policy_gradient.eNAC

method), 115

method), 22

_compute () (mushroom.utils.variance_parameters. WindowedXariapice Panesheoern.algorithms.actor_critic.deep_actor_critic. DDPG

method), 114 method), 14
_compute_action () (mush- _next_qg() (mushroom.algorithms.actor_critic.deep_actor_critic.SAC
room.environments.mujoco.MuJoCo method), method), 17
66 _next_qg /() (mushroom.algorithms.actor_critic.deep_actor_critic. TD3
_compute_exponents () (mush- method), 15

room.features.basis.polynomial. PolynomialBasis _next_q () (mushroom.algorithms.value.dgn.AveragedDON

static method), 77

_compute_gradient () (mush-

method), 40
_next_qg /() (mushroom.algorithms.value.dgn.Categorical DON

room.algorithms.policy_search.policy_gradient. GPOMDP method), 40

method), 21

_compute_gradient () (mush-

_next_qg/() (mushroom.algorithms.value.dgn.DOQN
method), 38

room.algorithms.policy_search.policy_gradient. RERNFBARGE) (mushroom.algorithms.value.dgn.DoubleDOQN

method), 20 method), 38
_compute_gradient () (mush- _next_qg() (mushroom.algorithms.value.td. RQLearning
room.algorithms.policy_search.policy_gradient.eNAC method), 33
method), 22 _next_qg () (mushroom.algorithms.value.td. WeightedQLearning
_episode_end_update () (mush- method), 32
room.algorithms.policy_search.policy_gradient. GPOMDRize_actor_parameters () (mush-
method), 21 room.algorithms.actor_critic.deep_actor_critic.A2C
_episode_end_update () (mush- method), 13
room.algorithms.policy_search.policy_gradient. REBNFQRGCEe_actor_parameters () (mush-

136

Index

Mushroom Documentation, Release 1.2.0

room.algorithms.actor_critic.deep_actor_critic. DDPG 66

method), 14 _step_update () (mush-
_optimize_actor_parameters () (mush- room.algorithms.policy_search.policy_gradient. GPOMDP

room.algorithms.actor_critic.deep_actor_critic.DeepAC method), 21

method), 12 _step_update () (mush-
_optimize_actor_parameters () (mush- room.algorithms.policy_search.policy_gradient. REINFORCE

room.algorithms.actor_critic.deep_actor_critic.SAC method), 20

method), 17 _step_update () (mush-
_optimize_actor_parameters () (mush- room.algorithms.policy_search.policy_gradient.eNAC

room.algorithms.actor_critic.deep_actor_critic. TD3 method), 22

method), 16 _update () (mushroom.algorithms.policy_search.black_box_optimizatior
_parse () (mushroom.algorithms.policy_search.policy_gradient. GP@HdA), 24

method), 21 _update () (mushroom.algorithms.policy_search.black_box_optimizatior
_parse () (mushroom.algorithms.policy_search.policy_gradient. REIDNIROLGE.S

method), 20 _update () (mushroom.algorithms.policy_search.black_box_optimizatior
_parse () (mushroom.algorithms.policy_search.policy_gradient.eN&€thod), 23

method), 22 _update () (mushroom.algorithms.value.td. DoubleQLearning
_parse () (mushroom.algorithms.value.td. DoubleQLearning method), 29

static method), 29 _update () (mushroom.algorithms.value.td. ExpectedSARSA
_parse () (mushroom.algorithms.value.td. ExpectedSARSA method), 27

static method), 27 _update () (mushroom.algorithms.value.td.QLearning
_parse () (mushroom.algorithms.value.td.QLearning method), 28

static method), 28 _update () (mushroom.algorithms.value.td.RLearning
_parse () (mushroom.algorithms.value.td. RLearning method), 30

static method), 31 _update () (mushroom.algorithms.value.td. RQLearning
_parse () (mushroom.algorithms.value.td. RQLearning method), 32

static method), 32 _update () (mushroom.algorithms.value.td. SARSA
_parse () (mushroom.algorithms.value.td.SARSA static method), 26

method), 26 _update () (mushroom.algorithms.value.td.SARSALambda
_parse () (mushroom.algorithms.value.td. SARSALambda method), 26

static method), 27
_parse () (mushroom.algorithms.value.td.SARSALambda
static method), 34

_parse () (mushroom.algorithms.value.td.SpeedyQLearning

static method), 30

_update () (mushroom.algorithms.value.td.SARSALambdaContinuous
Continuousethod), 33

_update () (mushroom.algorithms.value.td.SpeedyQLearning
method), 30

_update () (mushroom.algorithms.value.td. TrueOnlineSARSA Lambda

_parse () (mushroom.algorithms.value.td. TrueOnlineSARSA Lambdmethod), 34

static method), 34

_parse () (mushroom.algorithms.value.td. WeightedQLearning

static method), 32

_preprocess_action () (mush-
room.environments.mujoco.MuJoCo method),
66

_simulation_post_step () (mush-
room.environments.mujoco.MuJoCo method),
66

_simulation_pre_step() (mush-
room.environments.mujoco.MuJoCo method),
66

_step () (mushroom.core.core.Core method), 8

_step_finalize () (mush-
room.environments.mujoco.MuJoCo method),
66

_step_init () (mush-
room.environments.mujoco.MuJoCo method),

_update () (mushroom.algorithms.value.td. WeightedQLearning

method), 31

_update_parameters () (mush-
room.algorithms.policy_search.policy_gradient. GPOMDP
method), 21

_update_parameters () (mush-
room.algorithms.policy_search.policy_gradient. REINFORCE
method), 20

_update_parameters () (mush-
room.algorithms.policy_search.policy_gradient.eNAC
method), 23

_update_target () (mush-
room.algorithms.actor_critic.deep_actor_critic. DDPG
method), 14

_update_target () (mush-
room.algorithms.actor_critic.deep_actor_critic.SAC
method), 17

_update_target () (mush-

Index

137

Mushroom Documentation, Release 1.2.0

room.algorithms.actor_critic.deep_actor_critic. TRheck_collision ()

method), 15

_update_target () (mush-
room.algorithms.value.dgn.AveragedDON
method), 40

_update_target () (mush-
room.algorithms.value.dgn. Categorical DON
method), 41

_update_target () (mush-
room.algorithms.value.dqgn. DON method),
38

_update_target () (mush-

room.algorithms.value.dgn.Double DQN

method), 39

A

A2C (class in mush-
room.algorithms.actor_critic.deep_actor_critic),
12

AbstractGridWorld (class in mush-
room.environments.grid_world), 57

AccumulatingTrace (class in mush-
room.utils.eligibility_trace), 100

AdaptiveParameter (class in mush-

room.utils.parameters), 104

add () (mushroom.utils.replay_memory.PrioritizedReplayMemory

method), 106

add () (mushroom.utils.replay_memory.ReplayMemory
method), 105

add () (mushroom.utils.replay_memory.SumTree

method), 105
Agent (class in mushroom.algorithms.agent), 6
arrow_head () (mushroom.utils.viewer.Viewer
method), 117
Atari (class in mushroom.environments.atari), 53

AveragedDQN (class in mush-
room.algorithms.value.dgn), 39

B

background_image () (mush-

room.utils.viewer.Viewer method), 118
bfs () (in module mushroom.solvers.car_on_hill), 95
Boltzmann (class in mushroom.policy.td_policy), 90
Box (class in mushroom.utils.spaces), 107

C

Callback (class in mushroom.utils.callbacks), 96

CarOnHill (class in mush-
room.environments.car_on_hill), 54

CartPole (class in mushroom.environments.cart_pole),
62

CategoricalDQN (class
room.algorithms.value.dgn), 40

in mush-

(mush-
room.environments.mujoco.MuJoCo method),
67

circle () (mushroom.utils.viewer.Viewer method), 117

clean () (mushroom.utils.callbacks.Callback method),
96

close () (mushroom.environments.atari.MaxAndSkip

method), 52

close () (mushroom.utils.viewer.Viewer method), 118

CollectDataset (class in mushroom.utils.callbacks),
97

CollectMaxQ (class in mushroom.utils.callbacks), 97

CollectParameters (class in mush-
room.utils.callbacks), 97

CollectQ (class in mushroom.utils.callbacks), 97

compute_advantage () (in module mush-
room.utils.value_functions), 110

compute_advantage_montecarlo () (in module
mushroom.utils.value_functions), 110

compute_gae () (in module
room.utils.value_functions), 111

compute_J () (in module mushroom.utils.dataset), 98

mush-

compute_metrics () (in module mush-
room.utils.dataset), 98

compute_mu () (in module mush-
room.environments.generators.grid_world),
72

compute_mu () (in module mush-

room.environments.generators.taxi), 74
compute_probabilities () (in module mush-
room.environments.generators.grid_world), 72
compute_probabilities () (in module mush-
room.environments.generators.simple_chain),
73
compute_probabilities () (in module mush-
room.environments.generators.taxi), 74
compute_reward () (in module mush-
room.environments.generators.grid_world),
72

compute_reward () (in module mush-
room.environments.generators.simple_chain),
73

compute_reward () (in module mush-
room.environments.generators.taxi), 74

COPDAC_Q (class in mush-
room.algorithms.actor_critic.classic_actor_critic),
9

Core (class in mushroom.core.core), 8

D

DDPG (class in mush-
room.algorithms.actor_critic.deep_actor_critic),

13

138

Index

Mushroom Documentation, Release 1.2.0

DeepAC (class in mush- method), 88
room.algorithms.actor_critic.deep_actor_critic), diff_log () (mushroom.policy.policy.ParametricPolicy
12 method), 79
DeterministicPolicy (class in mush- Discrete (class in mushroom.utils.spaces), 107
room.policy.deterministic_policy), 80 display () (mushroom.utils.viewer.ImageViewer
DiagonalGaussianPolicy (class in mush- method), 116
room.policy.gaussian_policy), 83 display () (mushroom.utils.viewer.Viewer method),
diff () (mushroom.approximators.parametric.linear.LinearApproximdtor
method), 44 Distribution (class in mush-
diff () (mushroom.approximators.parametric.torch_approximator. Teoohd gistoitintisas.distribution), 46
method), 46 distribution () (mush-
diff () (mushroom.approximators.regressor.Regressor room.policy.torch_policy.GaussianTorchPolicy
method), 42 method), 94
diff () (mushroom.distributions.distribution.Distribution distribution () (mush-
method), 46 room.policy.torch_policy. TorchPolicy method),
diff () (mushroom.distributions.gaussian.GaussianCholeskyDistribfion
method), 51 distribution_t () (mush-
diff () (mushroom.distributions.gaussian.GaussianDiagonalDistribusiom.policy.torch_policy.GaussianTorchPolicy
method), 49 method), 94
diff () (mushroom.distributions.gaussian.GaussianDistrilditiph ribution_t () (mush-
method), 48 room.policy.torch_policy. TorchPolicy method),
diff () (mushroom.policy.deterministic_policy.DeterministicPolicy 92
method), 81 DMControl (class in mush-
diff () (mushroom.policy.gaussian_policy.DiagonalGaussianPolicy room.environments.dm_control_env), 55
method), 84 DoubleDQN (class in mushroom.algorithms.value.dgn),
diff () (mushroom.policy.gaussian_policy.GaussianPolicy 38
method), 83 DoubleFQI (class in mush-
diff () (mushroom.policy.gaussian_policy.StateLogStdGaussianPolicgom.algorithms.value.batch_td), 36
method), 87 DoubleQLearning (class in mush-
diff () (mushroom.policy.gaussian_policy.StateStdGaussianPolicy room.algorithms.value.td), 29
method), 85 DOQN (class in mushroom.algorithms.value.dgn), 37
diff () (mushroom.policy.noise_policy.OrnsteinUhlenbeckPolisy action () (mush-
method), 88 room.algorithms.actor_critic.classic_actor_critic. COPDAC_Q
diff () (mushroom.policy.policy.ParametricPolicy method), 9
method), 80 draw_action () (mush-
diff_log () (mushroom.distributions.distribution.Distribution room.algorithms.actor_critic.classic_actor_critic.StochasticAC
method), 46 method), 10
diff_log () (mushroom.distributions.gaussian.Gaussian CludeskaBistributipn (mush-
method), 50 room.algorithms.actor_critic.classic_actor_critic.StochasticAC_¢
diff_log () (mushroom.distributions.gaussian.GaussianDiagonal Duettfibddion]
method), 49 draw_action () (mush-
diff_log () (mushroom.distributions.gaussian.GaussianDistributiomwom.algorithms.actor_critic.deep_actor_critic.A2C
method), 48 method), 13
diff_log () (mushroom.policy.deterministic_policy.DetexdninistieRlicyn () (mush-
method), 81 room.algorithms.actor_critic.deep_actor_critic. DDPG
diff_log() (mushroom.policy.gaussian_policy.DiagonalGaussianPedibpd), 14
method), 84 draw_action () (mush-
diff_log () (mushroom.policy.gaussian_policy.GaussianPolicy — room.algorithms.actor_critic.deep_actor_critic.DeepAC
method), 82 method), 12
diff_log () (mushroom.policy.gaussian_policy.StateLogStdGaussivinPolicly) (mush-
method), 86 room.algorithms.actor_critic.deep_actor_critic.PPO
diff_log () (mushroom.policy.gaussian_policy.StateStdGaussianPatithod), 19
method), 85 draw_action () (mush-

diff_log () (mushroom.policy.noise_policy.OrnsteinUhlenbeckPoliowm.algorithms.actor_critic.deep_actor_critic.SAC

Index 139

Mushroom Documentation, Release 1.2.0

method), 17 draw_action () (mush-
draw_action () (mush- room.algorithms.value.td.QLearning method),
room.algorithms.actor_critic.deep_actor_critic. TD3 28
method), 16 draw_action () (mush-
draw_action () (mush- room.algorithms.value.td.RLearning method),
room.algorithms.actor_critic.deep_actor_critic. TRPO 31
method), 18 draw_action () (mush-
draw_action () (mushroom.algorithms.agent.Agent room.algorithms.value.td. RQLearning
method), 6 method), 33
draw_action () (mush- draw_action () (mush-
room.algorithms.policy_search.black_box_optimization.PGPdom.algorithms.value.td. SARSA method),
method), 24 26
draw_action () (mush- draw_action () (mush-

room.algorithms.policy_search.black_box_optimization. RERSom.algorithms.value.td.SARSA Lambda

method), 25

draw_action () (mush-

method), 27

room.algorithms.policy_search.black_box_optimization. RWkbom.algorithms.value.td.SARSA LambdaContinuous

method), 23

draw_action () (mush-

room.algorithms.policy_search.policy_gradient.eNAC

method), 23

draw_action () (mush-

draw_action () (mush-
method), 34

draw_action () (mush-
room.algorithms.value.td.SpeedyQLearning
method), 30

draw_action () (mush-

room.algorithms.policy_search.policy_gradient. GPOMDP room.algorithms.value.td. TrueOnlineSARSALambda

method), 21

draw_action () (mush-

method), 35

draw_action () (mush-

room.algorithms.policy_search.policy_gradient. REINFORCilsom.algorithms.value.td. WeightedQLearning

method), 20

draw_action () (mush-
room.algorithms.value.batch_td. Double FQI
method), 36

draw_action () (mush-
room.algorithms.value.batch_td. FQI method),
35

draw_action () (mush-
room.algorithms.value.batch_td. LSPI method),
37

draw_action () (mush-
room.algorithms.value.dgn.AveragedDON
method), 40

draw_action () (mush-
room.algorithms.value.dgn.Categorical DON
method), 41

draw_action ()
room.algorithms.value.dgn.Double DON
method), 39

(mush-

draw_action () (mush-
room.algorithms.value.dgn. DON method),
38

draw_action () (mush-

room.algorithms.value.td. DoubleQLearning

method), 32

draw_action () (mush-
room.policy.deterministic_policy. DeterministicPolicy
method), 81

draw_action () (mush-
room.policy.gaussian_policy.DiagonalGaussianPolicy
method), 84

draw_action () (mush-
room.policy.gaussian_policy.GaussianPolicy
method), 82

draw_action () (mush-
room.policy.gaussian_policy.StateLogStdGaussianPolicy
method), 86

draw_action () (mush-
room.policy.gaussian_policy.StateStdGaussianPolicy
method), 85

draw_action () (mush-
room.policy.noise_policy.OrnsteinUhlenbeckPolicy
method), 87

draw_action () (mush-
room.policy.policy.ParametricPolicy method),
80

draw_action () (mushroom.policy.policy.Policy
method), 79

method), 29 draw_action () (mush-
draw_action () (mush- room.policy.td_policy.Boltzmann method),

room.algorithms.value.td. ExpectedSARSA 90

method), 28 draw_action () (mush-
140 Index

Mushroom Documentation, Release 1.2.0

room.policy.td_policy. EpsGreedy method),
89

draw_action () (mush-
room.policy.td_policy.Mellowmax method),
91

draw_action () (mush-
room.policy.td_policy. TDPolicy method),
89

draw_action () (mush-

room.policy.torch_policy.GaussianTorchPolicy
method), 94

draw_action () (mush-
room.policy.torch_policy.TorchPolicy method),
92

draw_action_t () (mush-
room.policy.torch_policy.GaussianTorchPolicy
method), 93

draw_action_t () (mush-
room.policy.torch_policy.TorchPolicy method),
92

E

EligibilityTrace () (in module mush-
room.utils.eligibility_trace), 99

eNAC (class in mush-
room.algorithms.policy_search.policy_gradient),
22

EnsembleTable (class in mushroom.utils.table), 108

entropy () (mushroom.policy.torch_policy.GaussianTorchPolicy

method), 94

entropy () (mushroom.policy.torch_policy.TorchPolicy
method), 92

entropy_t () (mush-
room.policy.torch_policy.GaussianTorchPolicy
method), 93

entropy_t () (mush-
room.policy.torch_policy.TorchPolicy method),
92

Environment (class in mush-
room.environments.environment), 7

episode_start () (mush-

method), 14

episode_start () (mush-
room.algorithms.actor_critic.deep_actor_critic.DeepAC
method), 12

episode_start () (mush-
room.algorithms.actor_critic.deep_actor_critic.PPO
method), 19

episode_start () (mush-
room.algorithms.actor_critic.deep_actor_critic.SAC
method), 17

episode_start () (mush-
room.algorithms.actor_critic.deep_actor_critic.TD3
method), 16

episode_start () (mush-
room.algorithms.actor_critic.deep_actor_critic. TRPO
method), 18

episode_start ()
room.algorithms.agent.Agent method), 6

episode_start () (mush-
room.algorithms.policy_search.black_box_optimization.PGPE
method), 24

episode_start () (mush-
room.algorithms.policy_search.black_box_optimization.REPS
method), 25

episode_start () (mush-
room.algorithms.policy_search.black_box_optimization. RWR
method), 23

episode_start () (mush-

room.algorithms.policy_search.policy_gradient.eNAC

method), 23

episode_start () (mush-
room.algorithms.policy_search.policy_gradient. GPOMDP
method), 22

episode_start () (mush-
room.algorithms.policy_search.policy_gradient. REINFORCE
method), 21

episode_start () (mush-
room.algorithms.value.batch_td. Double FQI
method), 36

episode_start () (mush-
room.algorithms.value.batch_td. FQI method),

(mush-

room.algorithms.actor_critic.classic_actor_critic. COPDAC30)
method), 10 episode_start () (mush-
episode_start () (mush- room.algorithms.value.batch_td. LSPI method),
room.algorithms.actor_critic.classic_actor_critic.StochasticAiC
method), 10 episode_start () (mush-
episode_start () (mush- room.algorithms.value.dgn.AveragedDON
room.algorithms.actor_critic.classic_actor_critic.Stochastiah€ha¥(z40
method), 11 episode_start () (mush-
episode_start () (mush- room.algorithms.value.dgn. Categorical DON
room.algorithms.actor_critic.deep_actor_critic.A2C method), 41
method), 13 episode_start ()
episode_start () (mush- room.algorithms.value.dgn.DoubleDQN
room.algorithms.actor_critic.deep_actor_critic. DDPG method), 39

(mush-

Index 141

Mushroom Documentation, Release 1.2.0

episode_start () (mush-
room.algorithms.value.dgn.DOQN method),
38

episode_start () (mush-

room.algorithms.value.td. DoubleQLearning
method), 29

episode_start () (mush-
room.algorithms.value.td. ExpectedSARSA
method), 28

episode_start () (mush-
room.algorithms.value.td.QLearning method),
28

episode_start () (mush-
room.algorithms.value.td. RLearning method),
31

episode_start () (mush-
room.algorithms.value.td. RQLearning
method), 33

episode_start () (mush-
room.algorithms.value.td. SARSA method),
26

episode_start () (mush-

room.algorithms.value.td. SARSALambda
method), 27

episode_start () (mush-

fit () (mushroom.algorithms.actor_critic.classic_actor_critic.Stochastic/

method), 11

fit () (mushroom.algorithms.actor_critic.deep_actor_critic.A2C
method), 13

fit () (mushroom.algorithms.actor_critic.deep_actor_critic.c DDPG
method), 14

fit () (mushroom.algorithms.actor_critic.deep_actor_critic.DeepAC
method), 12

fit () (mushroom.algorithms.actor_critic.deep_actor_critic.PPO
method), 19

fit () (mushroom.algorithms.actor_critic.deep_actor_critic.SAC
method), 17

fit () (mushroom.algorithms.actor_critic.deep_actor_critic.TD3
method), 16

fit () (mushroom.algorithms.actor_critic.deep_actor_critic. TRPO
method), 18

fit () (mushroom.algorithms.agent.Agent method), 6
fit () (mushroom.algorithms.policy_search.black_box_optimization.PGP.

room.algorithms.value.td. SARSALambdaContinuofis t () (mushroom.algorithms.policy_search.policy_gradient. GPOMDP

method), 34

episode_start () (mush-
room.algorithms.value.td.SpeedyQLearning
method), 30

episode_start () (mush-

room.algorithms.value.td. TrueOnlineSARSA Lambda t ()

method), 34
episode_start () (mush-
room.algorithms.value.td. WeightedQLearning
method), 32
episodes_length () (in
room.utils.dataset), 98
EpsGreedy (class in mushroom.policy.td_policy), 89
evaluate () (mushroom.core.core.Core method), 8

module mush-

ExpectedSARSA (class in mush-
room.algorithms.value.td), 277
ExponentialParameter (class in mush-

room.utils.parameters), 103

F

Features () (in module mushroom.features.features),
74

FiniteMDP (class in
room.environments.finite_mdp), 56

mush-

method), 24
fit () (mushroom.algorithms.policy_search.black_box_optimization.REP:
method), 25
fit () (mushroom.algorithms.policy_search.black_box_optimization.RWR
method), 24
fit () (mushroom.algorithms.policy_search.policy_gradient.eNAC
method), 23
method), 22
fit () (mushroom.algorithms.policy_search.policy_gradient. REINFORCE
method), 21
fit () (mushroom.algorithms.value.batch_td.DoubleFQI
method), 36
(mushroom.algorithms.value.batch_td.FQI
method), 35
fit () (mushroom.algorithms.value.batch_td. LSPI
method), 37
fit () (mushroom.algorithms.value.dgn.AveragedDON
method), 40
fit () (mushroom.algorithms.value.dgn.Categorical DQN
method), 41
fit () (mushroom.algorithms.value.dgn.DoubleDQN
method), 39
fit () (mushroom.algorithms.value.dgn.DON method),
37
fit () (mushroom.algorithms.value.td.DoubleQLearning
method), 29
fit () (mushroom.algorithms.value.td.ExpectedSARSA
method), 28
fit () (mushroom.algorithms.value.td.QLearning
method), 29
fit () (mushroom.algorithms.value.td.RLearning

fit () (mushroom.algorithms.actor_critic.classic_actor_critic. COPEK’UI_(Q)’ 31

method), 9

fit () (mushroom.algorithms.value.td. RQLearning

fit () (mushroom.algorithms.actor_critic.classic_actor_critic.Stochm*ﬁ@ﬂ@’ 33

method), 10

fit () (mushroom.algorithms.value.td.SARSA method),

142

Index

Mushroom Documentation, Release 1.2.0

26
fit () (mushroom.algorithms.value.td. SARSALambda
method), 27

generate () (mushroom.features.basis.polynomial. PolynomialBasis

static method), 77

generate () (mushroom.features.tensors.gaussian_tensor.PyTorchGaussi

fit () (mushroom.algorithms.value.td. SARSALambdaContinuous static method), 78

method), 34

fit () (mushroom.algorithms.value.td.SpeedyQLearning

method), 30

generate () (mushroom.features.tiles.tiles.Tiles static

method), 78

generate_grid_world() (in module mush-

fit () (mushroom.algorithms.value.td. TrueOnlineSARSALambda room.environments.generators.grid_world),

method), 35

71

fit () (mushroom.algorithms.value.td. WeightedQLearninggenerate_simple_chain () (in module mush-

method), 32

room.environments.generators.simple_chain),

fit () (mushroom.approximators.parametric.linear.LinearApproximdfdr

method), 43

generate_taxi () (in module mush-

fit () (mushroom.approximators.parametric.torch_approximator. Tondohppnvitmatents. generators.taxi), 73

method), 45 get () (mushroom.utils.callbacks.Callback method), 96

fit () (mushroom.approximators.regressor.Regressor get () (mushroom.utils.replay_memory.PrioritizedReplayMemory
method), 42 method), 106

fit () (mushroom.utils.eligibility_trace.AccumulatingTracget () (mushroom.utils.replay_memory.ReplayMemory

method), 100

fit () (mushroom.utils.eligibility trace.ReplacingTrace
method), 99

fit () (mushroom.utils.table.EnsembleTable method),
109

fit () (mushroom.utils.table.Table method), 108

force_arrow () (mushroom.utils.viewer.Viewer
method), 117

force_symlink () (in module mush-
room.utils.folder), 101
FourierBasis (class in mush-

room.features.basis.fourier), 75
FQT (class in mushroom.algorithms.value.batch_td), 35
function () (mushroom.utils.viewer.Viewer method),
118

G

GaussianCholeskyDistribution (class in mush-
room.distributions.gaussian), 50

GaussianDiagonalDistribution (class in mush-
room.distributions.gaussian), 48

GaussianDistribution (class in mush-
room.distributions.gaussian), 47
GaussianPolicy (class in mush-
room.policy.gaussian_policy), 82
GaussianRBF (class in mush-
room.features.basis.gaussian_rbf), 76
GaussianTorchPolicy (class in mush-

room.policy.torch_policy), 93
generate () (mushroom.environments.lqrLQOR static
method), 64

generate () (mushroom.features.basis.fourier. FourierBasis

static method), 76

get_a()

get_qg()

get_q()

get_aq()

method), 105

get () (mushroom.utils.replay_memory.SumTree

method), 105

get_action_features () (in module mush-

room.features.features), 75

get_collision_force () (mush-

room.environments.mujoco.MuJoCo method),
67

get_gradient () (in module mushroom.utils.torch),

110

get_parameters () (mush-
room.distributions.distribution. Distribution
method), 47

get_parameters () (mush-

room.distributions.gaussian.GaussianCholeskyDistribution
method), 50

get_parameters () (mush-

room.distributions.gaussian. GaussianDiagonalDistribution

method), 49

get_parameters () (mush-

room.distributions.gaussian. GaussianDistribution
method), 48
(mushroom.policy.td_policy.Boltzmann
method), 90
(mushroom.policy.td_policy.EpsGreedy
method), 89
(mushroom.policy.td_policy.Mellowmax
method), 91
(mushroom.policy.td_policy. TDPolicy
method), 88

get_regressor () (mush-

room.policy.deterministic_policy. DeterministicPolicy
method), 81

generate () (mushroom.features.basis.gaussian_rbf.Gauss&mRBFL ue () (mush-

static method), 76

room.utils.parameters. Exponential Parameter
method), 104

Index

143

Mushroom Documentation, Release 1.2.0

get_value () (mush- method), 94
room.utils.parameters.LinearParameter get_weights () (mush-
method), 103 room.policy.torch_policy.TorchPolicy method),

get_value () (mushroom.utils.parameters.Parameter 93
method), 102 GPOMDP (class in mush-

get_value () (mush- room.algorithms.policy_search.policy_gradient),
room.utils.variance_parameters.VarianceDecreasing Paramétér
method), 113 GridWorld (class in mush-

get_value () (mush- room.environments.grid_world), 58
room.utils.variance_parameters.VariancelncreasitgPad@inatéidVanHasselt (class in mush-
method), 112 room.environments.grid_world), 59

get_value () (mush- Gym (class in mushroom.environments.gym_env), 60

room.utils.variance_parameters.VarianceParameter
method), 112
get_value () (mush- high (mushroom.utils.spaces.Box attribute), 107
room.utils.variance_parameters. WindowedVariancelncreasingParameter
method), 115 |

get_value () . .] (mMShj ImageViewer (class in mushroom.utils.viewer), 116
room.utils.variance_parameters. WlndowedVarlanQ_LeIf i éa(%ﬁgﬁroom. environments.atari.Atari attribute), 54

method), 114‘1) info (mushroom.environments.car_on_hill. CarOnHill
get_weights () (in module mushroom.utils.torch), attribute), 54

.l 10 info (mushroom.environments.cart_pole.CartPole at-
get_weights () (mush- tribute), 63

room.approximators.parametric.linear.LinearApp 0 sz%a(%shroom. environments.dm_control_env.DMControl

.method), 43 attribute), 56
get_weights () . . (mus h_' info (mushroom.environments.environment. Environment
room.approximators.parametric.torch_approximator.To rchAgﬁ;%%ﬁthr
.method), 45 info (mushroom.environments.finite_mdp.FiniteMDP
get_weights () (mush- attribute), 57
room.approximators.regressor.Regressor info (mushroom.environments.grid_world.AbstractGridWorld
.method), 42 attribute), 58
get_weights () . o _ (_m.“S h " info (mushroom.environments.grid_world.GridWorld
room.policy.deterministic_policy. DeterministicPolicy attribute), 58
'me thod), 81 info (mushroom.environments.grid_world. GridWorldVanHasselt
get_weights () (mush- attribute), 59
room.policy.gaussian_policy.DiagonalGaussianPolicy. | (mushroom.environments.gym_env.Gym attribute),
method), 84 61
get_weights () (n.ms h- info (mushroom.environments.inverted_pendulum.InvertedPendulum
room.policy.gaussian_policy.GaussianPolicy attribute), 62
'method), 83 info (mushroom.environments.lqr.LOR attribute), 64
get_weights (). .) (mush-. info (mushroom.environments.mujoco.MuJoCo at-
room.policy.gaussian_policy.StateLogStdGaussianPolicy tribute), 68
.method), 36 info (mushroom.environments.puddle_world. PuddleWorld
get_weights () (mush- attribute), 69
room.policy.gaussian _policy.StateSthaussianPoléLcl){f o (mushroom.environments.segway.Segway — at-
.method), 85 tribute), 70
get_weights (). .)) (mush- _ info (mushroom.environments.ship_steering.ShipSteering
room.policy.noise_policy.OrnsteinUhlenbeckPolicy attribute), 71
method), 88 initialized (mush-
get_weights () . o (mush- room.utils.replay_memory.PrioritizedReplayMemory
room.policy.policy.ParametricPolicy method), attribute), 107
80 initialized (mush-
get_weights () (mush-

room.utils.replay_memory.ReplayMemory

room.policy.torch_policy.GaussianTorchPolicy attribute), 105

144 Index

Mushroom Documentation, Release 1.2.0

input_shape (mush- mk_dir_recursive () (in module mush-
room.approximators.regressor.Regressor room.utils.folder), 101
attribute), 42 mle () (mushroom.distributions.distribution.Distribution
InvertedPendulum (class in mush- method), 46
room.environments.inverted_pendulum), mle () (mushroom.distributions.gaussian.GaussianCholeskyDistribution
61 method), 50
is_absorbing () (mush- mle () (mushroom.distributions.gaussian.GaussianDiagonalDistribution
room.environments.mujoco.MuJoCo method), method), 49
67 mle () (mushroom.distributions.gaussian.GaussianDistribution
method), 47
L model (mushroom.approximators.regressor.Regressor
LazyFrames (class in mushroom.environments.atari), attribute), 42
53 model (mushroom.utils.table.EnsembleTable attribute),
learn () (mushroom.core.core.Core method), 8 109
line () (mushroom.utils.viewer.Viewer method), 116 MuJoCo (class in mushroom.environments.mujoco), 65
LinearApproximator (class in mush- mushroom.algorithms.actor_critic.classic_actor_crit
room.approximators.parametric.linear), (module), 9
43 mushroom.algorithms.actor_critic.deep_actor_critic
LinearParameter (class in mush- (module), 12
room.utils.parameters), 103 mushroom.algorithms.agent (module), 6
log_pdf () (mushroom.distributions.distribution.Distributiorshroom.algorithms.policy_search.black_box_optimi:
method), 46 (module), 23
log_pdf () (mushroom.distributions.gaussian. GaussianCholeskyDixwibutiparithms .policy_search.policy_gradient
method), 50 (module), 20
log_pdf () (mushroom.distributions.gaussian. GaussianDisgstalDigyribitipar ithms . value .batch_td (mod-
method), 49 ule), 35
log_pdf () (mushroom.distributions.gaussian. GaussianDistriburiopm . algorithms . value . dqgn (module), 37
method), 47 mushroom.algorithms.value.td (module), 25
log_prob_t () (mush- mushroom.approximators.parametric.linear
room.policy.torch_policy.GaussianTorchPolicy (module), 43
method), 93 mushroom. approximators.parametric.torch_approximate
log_prob_t () (mush- (module), 44
room.policy.torch_policy. TorchPolicy method), mushroom.approximators.regressor (mod-
92 ule), 41
low (mushroom.utils.spaces.Box attribute), 107 mushroom.core. core (module), 8
LQR (class in mushroom.environments.lqr), 63 mushroom.distributions.distribution
LSPI (class in mushroom.algorithms.value.batch_td), 36 (module), 46

M mushroom.distributions.gaussian (module),
47

max_p (mushroom.utils.replay_memory.SumTree —at- ™ushroom.environments.atari (module), 51

tribute), 106 mushroom.environments.car_on_hill (mod-
max_priority (mush- ule), 54 .
room.utils.replay_memory. PrioritizedReplayMem@PyShroom.environments.cart_pole (module),
attribute), 107 62
MaxAndSkip (class in mushroom.environments.atari), mushroom.environments.dm_control_env
51 (module), 55
MDPInfo (class in mush- Mushroom.environments.environment (mod-
room.environments.environment), 6 ule), 6 . o
Mellowmax (class in mushroom.policy.td_policy), 90 mushroom.environments.finite mdp (mod-
minibatch_generator () (in module mush- ule), 56
room.utils.minibatches), 101 mushroom.environments.generators.grid_world
minibatch_number () (in module mush- (module), 71

mushroom.environments.generators.simple_chain

room.utils.minibatches), 101
(module), 72

Index 145

Mushroom Documentation, Release 1.2.0

mushroom.environments.generators.taxi
(module), 73

mushroom.environments.grid_world
ule), 57

mushroom.environments.gym_env (module), 60

(mod-

mushroom.utils.variance_parameters (mod-

ule), 111

mushroom.utils.viewer (module), 116

N

mushroom.environments.inverted_pendulum n_actions (mushroom.utils.eligibility_trace.AccumulatingTrace

(module), 61
mushroom.environments.lqgr (module), 63
mushroom.environments.mujoco (module), 65
mushroom.environments.puddle_world (mod-

ule), 68
mushroom.environments.segway (module), 69

mushroom.environments.ship_steering
(module), 70

mushroom. features._implementations.featupgseimnpdemgnEatdost () (in

(module), 75
mushroom. features
75
mushroom. features
(module), 76
mushroom. features
ule), 77
mushroom. features
mushroom. features
(module), 78
mushroom. features.tiles.tiles (module), 78
mushroom.policy.deterministic_policy
(module), 80
mushroom.policy.
82
mushroom.
mushroom.

.basis.fourier (module),
.basis.gaussian_rbf
.basis.polynomial (mod-

. features (module), 74

gaussian_policy (module),

policy.noise_policy (module), 87
policy.policy (module), 79
policy.td_policy (module), 88
policy.torch_policy (module), 91
mushroom.solvers.car_on_hill (module), 95
mushroom.solvers.dynamic_programming
(module), 95
mushroom.utils.angles (module), 96
mushroom.utils.callbacks (module), 96
mushroom.utils.dataset (module), 98
mushroom.utils.eligibility_trace
ule), 99
mushroom.utils.

mushroom.
mushroom.

(mod-

features (module), 100

. folder (module), 101
.minibatches (module), 101
.numerical_gradient (mod-

mushroom.utils
mushroom.utils
mushroom.utils
ule), 101
mushroom.utils.parameters (module), 102

mushroom.utils.replay_memory (module), 105

.tensors.gaussian_tensor

attribute), 100

n_actions (mushroom.utils.eligibility_trace.ReplacingTrace
attribute), 99

n_actions (mushroom.utils.table. Table attribute), 108

normalize_angle () (in module mush-
room.utils.angles), 96

normalize_angle_positive () (in module mush-
room.utils.angles), 96

module mush-
room.utils.numerical_gradient), 102

numerical_diff_policy () (in module mush-
room.utils.numerical_gradient), 101

O

ObservationType (class in mush-
room.environments.mujoco), 65

OrnsteinUhlenbeckPolicy (class in mush-
room.policy.noise_policy), 87

output_shape (mush-

room.approximators.regressor.Regressor
attribute), 42

F)

Parameter (class in mushroom.utils.parameters), 102

parameters () (mush-
room.policy.torch_policy.GaussianTorchPolicy
method), 94

parameters () (mush-
room.policy.torch_policy.TorchPolicy method),
93

parameters_size (mush-

room.distributions.distribution. Distribution
attribute), 47

parameters_size (mush-
room.distributions.gaussian.GaussianCholeskyDistribution
attribute), 50

parameters_size (mush-
room.distributions.gaussian.GaussianDiagonalDistribution
attribute), 49

parameters_size (mush-
room.distributions.gaussian. GaussianDistribution
attribute), 48

mushroom.utils.spaces (module), 107 Parametrrlc]?o}.lcy licy) (7c91ass n mssh-
mushroom.utils.table (module), 108 OOM.pORCY.pokcy),

. parse_dataset () (in module mush-
mushroom.utils.torch (module), 109 tils.dataset), 98
mushroom.utils.value_functions (module), room.units.aataset),

110
146 Index

Mushroom Documentation, Release 1.2.0

parse_grid() (in module mush-
room.environments.generators.grid_world),
71
parse_grid() (in module
room.environments.generators.taxi), 73
(class in

mush-

PGPE mush-

room.algorithms.policy_search.black_box_optimization),

24
Policy (class in mushroom.policy.policy), 79
policy_iteration() (in module
room.solvers.dynamic_programming), 95
polygon () (mushroom.utils.viewer.Viewer method),
117
PolynomialBasis (class in
room.features.basis.polynomial), 77
(class in mush-
room.algorithms.actor_critic.deep_actor_critic),
19

mush-

mush-

PPO

ReplacingTrace (class in mush-
room.utils.eligibility_trace), 99

ReplayMemory (class in mush-
room.utils.replay_memory), 105

REPS (class in mush-
room.algorithms.policy_search.black_box_optimization),
24

reset () (mushroom.approximators.regressor.Regressor
method), 42

reset () (mushroom.core.core.Core method), 9

reset () (mushroom.environments.atari.Atari method),
53

reset () (mushroom.environments.atari.MaxAndSkip
method), 51

reset () (mushroom.environments.car_on_hill. CarOnHill

method), 54

(mushroom.environments.cart_pole.CartPole
method), 62

reset ()

predict () (mushroom.approximators.parametric.linear. LincaeAppréminsdu@om. environments.dm_control_env.DM Control

method), 43

method), 55

predict () (mushroom.approximators.parametric.torch_apprxintgténilistoiobppeovineatoients. environment. Environment

method), 45

method), 7

predict () (mushroom.approximators.regressor.Regressomreset () (mushroom.environments.finite_mdp.FiniteMDP

method), 42

method), 56

predict () (mushroom.utils.eligibility_trace.AccumulatingBaet () (mushroom.environments.grid_world. AbstractGridWorld

method), 100

method), 57

predict () (mushroom.utils.eligibility_trace.ReplacingTraveset () (mushroom.environments.grid_world.GridWorld

method), 99

predict () (mushroom.utils.table. EnsembleTable
method), 109

predict () (mushroom.utils.table. Table method), 108

PrioritizedReplayMemory (class in mush-
room.utils.replay_memory), 106

PuddleWorld (class in
room.environments.puddle_world), 68

PyTorchGaussianRBF (class in
room.features.tensors.gaussian_tensor),
78

mush-

mush-

Q

QLearning (class in mushroom.algorithms.value.td),
28

R

read_data () (mush-
room.environments.mujoco.MuJoCo method),
66

Regressor (class in mush-
room.approximators.regressor), 41

REINFORCE (class in mush-
room.algorithms.policy_search.policy_gradient),
20

render () (mushroom.environments.atari.MaxAndSkip

method), 52

method), 58
reset () (mushroom.environments.grid_world. GridWorldVanHasselt
method), 59
(mushroom.environments.gym_env.Gym
method), 60
reset () (mushroom.environments.inverted_pendulum.InvertedPendulum
method), 61
reset () (mushroom.environments.lqgr. LOR method), 64
reset () (mushroom.environments.mujoco.MuJoCo
method), 66
reset () (mushroom.environments.puddle_world. Puddle World
method), 68
(mushroom.environments.segway.Segway
method), 69
reset () (mushroom.environments.ship_steering.ShipSteering
method), 70
reset () (mushroom.policy.deterministic_policy.DeterministicPolicy
method), 82
reset () (mushroom.policy.gaussian_policy.DiagonalGaussianPolicy
method), 84
reset () (mushroom.policy.gaussian_policy.GaussianPolicy
method), 83
reset () (mushroom.policy.gaussian_policy.StateLogStdGaussianPolicy
method), 87
reset () (mushroom.policy.gaussian_policy.StateStdGaussianPolicy
method), 86
reset () (mushroom.policy.noise_policy.OrnsteinUhlenbeckPolicy

reset ()

reset ()

Index

147

Mushroom Documentation, Release 1.2.0

method), 88 seed () (mushroom.environments.atari. MaxAndSkip

reset () (mushroom.policy.policy.ParametricPolicy method), 52
method), 80 seed () (mushroom.environments.car_on_hill. CarOnHill

reset () (mushroom.policy.policy.Policy method), 79 method), 54

reset () (mushroom.policy.td_policy.Boltzmann seed () (mushroom.environments.cart_pole.CartPole
method), 90 method), 63

reset () (mushroom.policy.td_policy.EpsGreedy seed () (mushroom.environments.dm_control_env.DMControl
method), 89 method), 56

reset () (mushroom.policy.td_policy.Mellowmax seed () (mushroom.environments.environment. Environment
method), 91 method), 7

reset () (mushroom.policy.td_policy. TDPolicy seed () (mushroom.environments.finite_mdp.FiniteMDP
method), 89 method), 57

reset () (mushroom.policy.torch_policy.GaussianTorchPoexd () (mushroom.environments.grid_world.AbstractGridWorld
method), 94 method), 58

reset () (mushroom.policy.torch_policy. TorchPolicy seed () (mushroom.environments.grid_world.GridWorld
method), 93 method), 59

reset () (mushroom.utils.eligibility_trace.AccumulatingTraeed () (mushroom.environments.grid_world. GridWorldVanHasselt
method), 100 method), 59

reset () (mushroom.utils.eligibility_trace.ReplacingTraceseed () (mushroom.environments.gym_env.Gym
method), 99 method), 61

reset () (mushroom.utils.replay_memory.ReplayMemory seed () (mushroom.environments.inverted_pendulum.InvertedPendulum

method), 105
(mushroom.utils.table. EnsembleTable

method), 109

reward () (mushroom.environments.mujoco.MuJoCo
method), 67

RLearning (class in mushroom.algorithms.value.td),
30

RQLearning (class in mushroom.algorithms.value.td),
32

reset ()

RWR (class in mush-

method), 62

seed () (mushroom.environments.lqr.LOR method), 65

seed () (mushroom.environments.mujoco.MuJoCo
method), 66

seed () (mushroom.environments.puddle_world. PuddleWorld

method), 69

(mushroom.environments.segway.Segway

method), 70

seed () (mushroom.environments.ship_steering.ShipSteering
method), 71

seed ()

room.algorithms.policy_search.black_box_optimigigwyy (class in mushroom.environments.segway), 69

23

select_first_episodes () (in module mush-
room.utils.dataset), 98

select_random_samples () (in module mush-

SAC (class in mush- room.utils.dataset), 98
room.algorithms.actor_critic.deep_actor_critic), set_beta () (mushroom.policy.td_policy.Boltzmann
16 method), 90

sample () (mushroom.distributions.distribution.Distributicret_beta () (mushroom.policy.td_policy.Mellowmax
method), 46 method), 91

sample () (mushroom.distributions.gaussian. GaussianChaleskyBiiréindionend () (mush-
method), 50 room.environments.atari.Atari method),

sample () (mushroom.distributions.gaussian.GaussianDiagonalDistrtbution
method), 48 set_epsilon () (mush-

sample () (mushroom.distributions.gaussian.GaussianDistribution room.policy.td_policy.EpsGreedy method),
method), 47 89

SARSA (class in mushroom.algorithms.value.td), 25 set_parameters () (mush-

SARSALambda (class in mush- room.distributions.distribution. Distribution
room.algorithms.value.td), 26 method), 47

SARSALambdaContinuous (class in mush- set_parameters/() (mush-

room.algorithms.value.td), 33
screen (mushroom.utils.viewer.Viewer attribute), 116
seed () (mushroom.environments.atari.Atari method),
54

room.distributions.gaussian.GaussianCholeskyDistribution
method), 50

set_parameters () (mush-
room.distributions.gaussian.GaussianDiagonalDistribution

148

Index

Mushroom Documentation, Release 1.2.0

method), 49 93
set_parameters () (mush- setup () (mushroom.environments.mujoco.MuJoCo
room.distributions.gaussian. GaussianDistribution method), 68
method), 48 shape (mushroom.environments.environment.MDPInfo
set_qg() (mushroom.policy.td_policy.Boltzmann attribute), 7
method), 90 shape (mushroom.utils.eligibility_trace.AccumulatingTrace
set_qg() (mushroom.policy.td_policy.EpsGreedy attribute), 100
method), 90 shape (mushroom.utils.eligibility_trace.ReplacingTrace
set_qg() (mushroom.policy.td_policy.Mellowmax attribute), 100
method), 91 shape (mushroom.utils.parameters.Exponential Parameter
set_qgl() (mushroom.policy.td_policy. TDPolicy attribute), 104
method), 88 shape (mushroom.utils.parameters.LinearParameter at-
set_sigma () (mush- tribute), 103
room.policy.gaussian_policy.GaussianPolicy shape (mushroom.utils.parameters.Parameter at-
method), 82 tribute), 103
set_std () (mushroom.policy.gaussian_policy.Diagonal Gehssgen@alishroom.utils.spaces. Box attribute), 107
method), 83 shape (mushroom.utils.spaces.Discrete attribute), 108
set_weights () (in module mushroom.utils.torch), shape (mushroom.utils.table.Table attribute), 108
109 shape (mushroom.utils.variance_parameters.VarianceDecreasing Paramet
set_weights () (mush- attribute), 113
room.approximators.parametric.linear. LinearApprowtmuadmushroom.utils.variance_parameters.Variancelncreasing Paramete
method), 43 attribute), 112
set_weights () (mush- shape (mushroom.utils.variance_parameters.VarianceParameter
room.approximators.parametric.torch_approximator. TorchAppribuitedson 2
method), 45 shape (mushroom.utils.variance_parameters. WindowedVariancelncreasin
set_weights () (mush- attribute), 115
room.approximators.regressor.Regressor shape (mushroom.utils.variance_parameters. WindowedVarianceParamete
method), 42 attribute), 114
set_weights () (mush- ShipSteering (class in mush-
room.policy.deterministic_policy.DeterministicPolicy room.environments.ship_steering), 70
method), 81 shortest_angular_distance () (in module
set_weights () (mush- mushroom.utils.angles), 96
room.policy.gaussian_policy.DiagonalGaussianPdicye (mushroom.environments.environment. MDPInfo
method), 84 attribute), 7
set_weights () (mush- size (mushroom.utils.replay_memory.ReplayMemory
room.policy.gaussian_policy.GaussianPolicy attribute), 105
method), 83 size (mushroom.utils.replay_memory.SumTree at-
set_weights () (mush- tribute), 106
room.policy.gaussian_policy.StateLogStdGaussiardPotiemushroom.utils.spaces.Discrete attribute), 108
method), 86 size (mushroom.utils.viewer.Viewer attribute), 116
set_weights () (mush- solve_car_on_hill () (in module mush-
room.policy.gaussian_policy.StateStdGaussianPolicy room.solvers.car_on_hill), 95
method), 85 SpeedyQLearning (class in mush-
set_weights () (mush- room.algorithms.value.td), 29
room.policy.noise_policy.OrnsteinUhlenbeckPolicgquare () (mushroom.utils.viewer.Viewer method), 116
method), 88 StateLogStdGaussianPolicy (class in mush-
set_weights () (mush- room.policy.gaussian_policy), 86
room.policy.policy.ParametricPolicy method), StateStdGaussianPolicy (class in mush-
80 room.policy.gaussian_policy), 84
set_weights () (mush- step () (in module mushroom.solvers.car_on_hill), 95
room.policy.torch_policy.GaussianTorchPolicy — step () (mushroom.environments.atari.Atari method),
method), 94 53
set_weights () (mush- step () (mushroom.environments.atari. MaxAndSkip
room.policy.torch_policy.TorchPolicy method), method), 51

Index 149

Mushroom Documentation, Release 1.2.0

step () (mushroom.environments.car_on_hill. CarOnHill method), 18
method), 54 stop () (mushroom.algorithms.agent.Agent method), 6

step () (mushroom.environments.cart_pole.CartPole stop () (mushroom.algorithms.policy_search.black_box_optimization.PG
method), 63 method), 24

step () (mushroom.environments.dm_control_env.DMContstop () (mushroom.algorithms.policy_search.black_box_optimization.RE]

method), 55

method), 25

step () (mushroom.environments.environment. Environmengtop () (mushroom.algorithms.policy_search.black_box_optimization.RW

method), 7

method), 24

step () (mushroom.environments.finite_mdp.FiniteMDP stop () (mushroom.algorithms.policy_search.policy_gradient.eNAC

method), 56 method), 23

step () (mushroom.environments.grid_world. AbstractGrid¥¥ootl () (mushroom.algorithms.policy_search.policy_gradient. GPOMDP
method), 57 method), 22

step () (mushroom.environments.grid_world. GridWorld stop () (mushroom.algorithms.policy_search.policy_gradient. REINFORC
method), 59 method), 21

step () (mushroom.environments.grid_world. GridWorldVastaossejt (imushroom.algorithms.value.batch_td. Double F QI
method), 60 method), 36

step () (mushroom.environments.gym_env.Gym stop () (mushroom.algorithms.value.batch_td. FQI
method), 60 method), 35

step () (mushroom.environments.inverted_pendulum.Inverged®endulum (mushroom.algorithms.value.batch_td. LSPI

method), 61

method), 37

step () (mushroom.environments.lqrLOR method), 64 stop () (mushroom.algorithms.value.dgn.AveragedDQN

step () (mushroom.environments.mujoco.MuJoCo method), 40

method), 66 stop () (mushroom.algorithms.value.dgn.Categorical DON
step () (mushroom.environments.puddle_world. PuddleWorld method), 41

method), 69 stop () (mushroom.algorithms.value.dgn. Double DQN
step () (mushroom.environments.segway.Segway method), 39

method), 69 stop () (mushroom.algorithms.value.dgn.DQN
step () (mushroom.environments.ship_steering.ShipSteering method), 38

method), 70 stop () (mushroom.algorithms.value.td. DoubleQLearning
StochasticAC (class in mush- method), 29

room.algorithms.actor_critic.classic_actor_critic)stop () (mushroom.algorithms.value.td. ExpectedSARSA

10 method), 28
StochasticAC_AVG (class in mush- stop () (mushroom.algorithms.value.td.QLearning

room.algorithms.actor_critic.classic_actor_critic), method), 29

11 stop () (mushroom.algorithms.value.td.RLearning
stop () (mushroom.algorithms.actor_critic.classic_actor_critic. CORiA0d), 31

method), 10 stop () (mushroom.algorithms.value.td. RQLearning
stop () (mushroom.algorithms.actor_critic.classic_actor_critic.StochestiodY; 33

method), 10 stop () (mushroom.algorithms.value.td.SARSA

stop () (mushroom.algorithms.actor_

method), 11

stop () (mushroom.algorithms.actor_

method), 13

stop () (mushroom.algorithms.actor_

method), 14

stop () (mushroom.algorithms.actor_

method), 12

stop () (mushroom.algorithms.actor_

method), 19

stop () (mushroom.algorithms.actor_

method), 17

stop () (mushroom.algorithms.actor_

method), 16

stop () (mushroom.algorithms.actor_

critic.classic_actor_critic.Stochestiody; 28VG

stop () (mushroom.algorithms.value.td.SARSALambda
critic.deep_actor_critic.A2C method), 27

stop () (mushroom.algorithms.value.td.SARSA LambdaContinuous
critic.deep_actor_critic. DDPGnethod), 34

stop () (mushroom.algorithms.value.td.SpeedyQLearning
critic.deep_actor_critic. DeepAfaethod), 30

stop () (mushroom.algorithms.value.td. TrueOnlineSARSALambda
critic.deep_actor_critic.PPO method), 35

stop () (mushroom.algorithms.value.td. WeightedQLearning
critic.deep_actor_critic.SAC method), 32

stop () (mushroom.environments.atari.Atari method),
critic.deep_actor_critic.TD3 53

stop () (mushroom.environments.car_on_hill. CarOnHill
critic.deep_actor_critic. TRPOmethod), 55

150

Index

Mushroom Documentation, Release 1.2.0

stop () (mushroom.environments.cart_pole.CartPole U
method), 63 uniform_grid/() (in module mush-
stop () (mushroom.environments.dm_control_env.DMControl room.utils.features), 100
method), 55 unwrapped (mushroom.environments.atari.MaxAndSkip
stop () (mushroom.environments.environment. Environment attribute), 52
method), 7 update () (mushroom.policy.td_policy.Boltzmann
stop () (mushroom.environments.finite_mdp.FiniteMDP method), 90
method), 57 update () (mushroom.policy.td_policy.EpsGreedy
stop () (mushroom.environments.grid_world. AbstractGridWorld method), 89
method), 58 update () (mushroom.policy.td_policy.Mellowmax
stop () (mushroom.environments.grid_world.GridWorld method), 91
method), 59 update () (mushroom.utils.eligibility_trace.AccumulatingTrace
stop () (mushroom.environments.grid_world. GridWorldVanHasselt method), 100
method), 60 update () (mushroom.utils.eligibility_trace.ReplacingTrace
stop () (mushroom.environments.gym_env.Gym method), 99
method), 60 update () (mushroom.utils.parameters. Exponential Parameter
stop () (mushroom.environments.inverted _pendulum.InvertedPendul;”g,hod)’ 104
method), 62 update () (mushroom.utils.parameters.LinearParameter
stop () (mushroom.environments.lqr.LOR method), 65 method), 103
stop () (mushroom.environments.mujoco.MuJoCo update () (mushroom.utils.parameters.Parameter
method), 66 . method), 102
stop () (mushroom.environments.puddle_world.PuddleWotd st e () (mushroom.utils.replay_memory.PrioritizedReplayMemory
method), 69 _ method), 106
stop () (mushroom.environments.segway.Segway ypdate () (mushroom.utils.replay_memory.SumTree
method), 70 . . ' . _ method), 106
stop () (mushroom.environments.ship_steering.ShipSteer Mfdate () (mushroom.utils.variance_parameters.VarianceDecreasing Par
method), 70 method), 113

sumTree (class in mushroom.utils.replay_memory), 105 ypqate () (mushroom.utils.variance_parameters.VariancelncreasingPara
method), 112
T

update () (mushroom.utils.variance_parameters.VarianceParameter

Table (class in mushroom.utils.table), 108 method), 111
TD3 (class in mush- update () (mushroom.utils.variance_parameters.WindowedVariancelncre
room.algorithms.actor_critic.deep_actor_critic), method), 115
14 update () (mushroom.utils.variance_parameters.WindowedVariancePara
TDPolicy (class in mushroom.policy.td_policy), 88 method), 114
Tiles (class in mushroom.features.tiles.tiles), 78 use_cuda (mushroom.policy.torch_policy.GaussianTorchPolicy
to_float_tensor () (in module mush- attribute), 94
room.utils.torch), 110 use_cuda (mushroom.policy.torch_policy.TorchPolicy
TorchApproximator (class in mush- attribute), 93
room.approximators.parametric. torch_approxima&o/r) ,
44
TorchPolicy (class in mushroom.policy.torch_policy), ~value iteration () (in module mush-
91 room.solvers.dynamic_programming), 95
torque_arrow () (mushroom.utils.viewer.Viewer varianceDecreasingParameter (class in mush-
method), 118 room.utils.variance_parameters), 113
total_p (mushroom.utils.replay_memory.SumTree at- VarianceIncreasingParameter (class in mush-
tribute), 106 room.utils.variance_parameters), 112
TRPO (class in mush- VarianceParameter (class in mush-
room.algorithms.actor_critic.deep_actor_critic), room.utils.variance_parameters), 111
17 Viewer (class in mushroom.utils.viewer), 116

TrueOnlineSARSALambda (class in mush-
room.algorithms.value.td), 34

WeightedQLearning (class in mush-
room.algorithms.value.td), 31

Index 151

Mushroom Documentation, Release 1.2.0

weights_size (mush-
room.approximators.parametric.linear. LinearApproximator
attribute), 43

weights_size (mush-
room.approximators.parametric.torch_approximator. TorchApproximator
attribute), 45

weights_size (mush-
room.approximators.regressor.Regressor
attribute), 42

weights_size (mush-
room.policy.deterministic_policy. DeterministicPolicy
attribute), 81

weights_size (mush-
room.policy.gaussian_policy.DiagonalGaussianPolicy
attribute), 84

welghts_size (mush-
room.policy.gaussian_policy.GaussianPolicy
attribute), 83

weights_size (mush-
room.policy.gaussian_policy.StateLogStdGaussianPolicy
attribute), 86

welghts_size (mush-
room.policy.gaussian_policy.StateStdGaussianPolicy
attribute), 85

weights_size (mush-
room.policy.noise_policy.OrnsteinUhlenbeckPolicy
attribute), 88

welghts_size (mush-
room.policy.policy.ParametricPolicy attribute),
80

WindowedVariancelIncreasingParameter
(class in mush-
room.utils.variance_parameters), 114

WindowedVarianceParameter (class in mush-
room.utils.variance_parameters), 113

write_data () (mush-
room.environments.mujoco.MuJoCo method),
67

Z

zero_grad () (in module mushroom.utils.torch), 110

152 Index

	Reinforcement Learning python library
	Basic run example
	Download and installation
	Agent-Environment Interface
	Actor-Critic
	Policy search
	Value-Based
	Approximators
	Distributions
	Environments
	Features
	Policy
	Solvers
	Utils
	How to make a simple experiment
	How to make an advanced experiment
	How to create a regressor
	How to make a deep RL experiment

	Python Module Index
	Index

