

MushroomRL

Introduction

What is MushroomRL

MushroomRL is a Reinforcement Learning (RL) library developed to be a simple, yet
powerful way to make RL and deep RL experiments. The idea behind MushroomRL
is to offer the majority of RL algorithms providing a common interface
in order to run them without excessive effort. Moreover, it is designed in such
a way that new algorithms and other stuff can be added transparently,
without the need of editing other parts of the code. MushroomRL is compatible with RL
libraries like
OpenAI Gym [https://gym.openai.com/],
DeepMind Control Suite [https://github.com/deepmind/dm_control],
Pybullet [https://pybullet.org/wordpress/], and
MuJoCo [http://www.mujoco.org/], and
the PyTorch [https://pytorch.org] library for tensor computation.

With MushroomRL you can:

	solve RL problems simply writing a single small script;

	add custom algorithms, policies, and so on, transparently;

	use all RL environments offered by well-known libraries and build customized
environments as well;

	exploit regression models offered by third-party libraries (e.g., scikit-learn) or
build a customized one with PyTorch;

	seamlessly run experiments on CPU or GPU.

Basic run example

Solve a discrete MDP in few a lines. Firstly, create a MDP:

from mushroom_rl.environments import GridWorld

mdp = GridWorld(width=3, height=3, goal=(2, 2), start=(0, 0))

Then, an epsilon-greedy policy with:

from mushroom_rl.policy import EpsGreedy
from mushroom_rl.utils.parameters import Parameter

epsilon = Parameter(value=1.)
policy = EpsGreedy(epsilon=epsilon)

Eventually, the agent is:

from mushroom_rl.algorithms.value import QLearning

learning_rate = Parameter(value=.6)
agent = QLearning(mdp.info, policy, learning_rate)

Learn:

from mushroom_rl.core import Core

core = Core(agent, mdp)
core.learn(n_steps=10000, n_steps_per_fit=1)

Print final Q-table:

import numpy as np

shape = agent.Q.shape
q = np.zeros(shape)
for i in range(shape[0]):
 for j in range(shape[1]):
 state = np.array([i])
 action = np.array([j])
 q[i, j] = agent.Q.predict(state, action)
print(q)

Results in:

[[6.561 7.29 6.561 7.29]
 [7.29 8.1 6.561 8.1]
 [8.1 9. 7.29 8.1]
 [6.561 8.1 7.29 8.1]
 [7.29 9. 7.29 9.]
 [8.1 10. 8.1 9.]
 [7.29 8.1 8.1 9.]
 [8.1 9. 8.1 10.]
 [0. 0. 0. 0.]]

where the Q-values of each action of the MDP are stored for each rows
representing a state of the MDP.

Download and installation

MushroomRL can be downloaded from the
GitHub [https://github.com/MushroomRL/mushroom-rl] repository.
Installation can be done running

pip3 install mushroom_rl

To compile the documentation:

cd mushroom_rl/docs
make html

or to compile the pdf version:

cd mushroom_rl/docs
make latexpdf

To launch MushroomRL test suite:

pytest

Installation troubleshooting

Common problems with the installation of MushroomRL arise in case some of its dependency are
broken or not installed. In general, we recommend installing MushroomRL with the option all to install all the Python
dependencies. The installation time mostly depends on the time to install the dependencies.
A simple installation takes approximately 1 minute with a fast internet connection.
Installing with all the dependencies takes approximately 5 minutes using a fast internet connection. A slower
internet connection may increase the installation time significantly.

If installing all the dependencies, ensure that the swig library is installed, as it is used
by some Gym environments and the installation may fail otherwise. For Atari, you might need to install the ROM separately, otherwise
the creation of Atari environments may fail. Opencv should be installed too. For MuJoCo, ensure that the path of your MuJoCo folder is included
in the environment variable LD_LIBRARY_PATH and that mujoco_py is correctly installed.
Installing MushroomRL in a Conda environment is generally
safe. However, we are aware that when installing with the option
plots, some errors may arise due to incompatibility issues between
pyqtgraph and Conda. We recommend not using Conda when installing using plots.
Finally, ensure that C/C++ compilers and Cython are working as expected.

To check if the installation has been successful, you can try to run the basic example above.

MushroomRL is well-tested on Linux. If you are using another OS, you may incur in issues that
we are still not aware of. In that case, please do not hesitate sending us an email at mushroom4rl@gmail.com.

MushroomRL vs other libraries

MushroomRL offers the majority of classical and deep RL algorithms, while keeping a modular
and flexible architecture. It is compatible with Pytorch, and most machine learning and RL
libraries.

	Features

	
MushroomRL

	
Stable Baselines

	
RLLib

	
Keras RL

	
Chainer RL

	
Tensorforce

	Classic RL algorithms

	
✅

	
❌

	
❌

	
❌

	
❌

	
❌

	Deep RL algorithms

	
✅

	
✅

	
✅

	
❌

	
✅

	
❌

	Updated documentation

	
✅

	
✅

	
✅

	
❌

	
✅

	
✅

	Modular

	
✅

	
❌

	
❌

	
❌

	
✅

	
✅

	Easy to extend

	
✅

	
❌

	
❌

	
❌

	
❌

	
❌

	PEP8 compliant

	
✅

	
✅

	
✅

	
✅

	
✅

	
✅

	Compatible with RL benchmarks

	
✅

	
✅

	
✅

	
❌

	
✅

	
✅

	Benchmarking suite

	
✅

	
✅

	
✅

	
✅

	
✅

	
✅

	MujoCo integration

	
✅

	
❌

	
❌

	
❌

	
❌

	
❌

	Pybullet integration

	
✅

	
❌

	
❌

	
❌

	
❌

	
❌

	Torch integration

	
✅

	
❌

	
✅

	
✅

	
❌

	
❌

	Tensorflow integration

	
❌

	
✅

	
✅

	
✅

	
❌

	
✅

	Chainer integration

	
❌

	
❌

	
❌

	
❌

	
✅

	
❌

	Parallel environments

	
❌

	
✅

	
✅

	
❌

	
✅

	
✅

API Documentation

API:

	Agent-Environment Interface
	Agent

	Environment

	Core

	Serialization

	Logger

	Actor-Critic
	Classical Actor-Critic Methods

	Deep Actor-Critic Methods

	Policy search
	Policy gradient

	Black-Box optimization

	Value-Based
	TD

	Batch TD

	DQN

	Approximators
	Regressor

	Approximator

	Distributions
	Gaussian

	Environments
	Environments

	Generators

	Features
	Basis

	Tensors

	Tiles

	Policy
	Deterministic policy

	Gaussian policy

	Noise policy

	TD policy

	Torch policy

	Solvers
	Dynamic programming

	Car-On-Hill brute-force solver

	LQR solver

	Utils
	Angles

	Callbacks

	Dataset

	Eligibility trace

	Features

	Folder

	Frames

	Minibatches

	Numerical gradient

	Parameters

	Replay memory

	Spaces

	Table

	Torch

	Value Functions

	Variance parameters

	Viewer

Tutorials

Tutorials:

	How to make a simple experiment

	How to make an advanced experiment

	How to create a regressor
	Usage of the Regressor interface

	Example

	Generic regressor

	How to make a deep RL experiment
	Solving Atari with DQN

	Solving MuJoCo with DDPG

	How to use the Logger
	Constructing the Logger

	Logging message on the console

	Logging a Reinforcement Learning experiment

	Advanced Logger topics

	How to use the Environment interface
	Old-school enviroment creation

	Environment registration

	Creating a new environment

	Learning in the toy environment

	How to use the Serializable interface
	Save and load from disk

	Full Save

	Implementing the Serializable interface

Agent-Environment Interface

The three basic interface of mushroom_rl are the Agent, the Environment and the Core interface.

	The Agent is the basic interface for any Reinforcement Learning algorithm.

	The Environment is the basic interface for every problem/task that the agent should solve.

	The Core is a class used to control the interaction between an agent and an environment.

To implement serialization of MushroomRL data on the disk (load/save functionality) we also provide the Serializable
interface. Finally, we provide the logging functionality with the Logger class.

Agent

MushroomRL provides the implementations of several algorithms belonging to all
categories of RL:

	value-based;

	policy-search;

	actor-critic.

One can easily implement customized algorithms following the structure of the
already available ones, by extending the following interface:

	
class Agent(mdp_info, policy, features=None)

	Bases: mushroom_rl.core.serialization.Serializable

This class implements the functions to manage the agent (e.g. move the agent
following its policy).

	
__init__(mdp_info, policy, features=None)

	Constructor.

	Parameters

	
	mdp_info (MDPInfo) – information about the MDP;

	policy (Policy) – the policy followed by the agent;

	features (object, None) – features to extract from the state.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

Environment

MushroomRL provides several implementation of well known benchmarks with both
continuous and discrete action spaces.

To implement a new environment, it is mandatory to use the following interface:

	
class MDPInfo(observation_space, action_space, gamma, horizon)

	Bases: mushroom_rl.core.serialization.Serializable

This class is used to store the information of the environment.

	
__init__(observation_space, action_space, gamma, horizon)

	Constructor.

	Parameters

	
	observation_space ([Box, Discrete]) – the state space;

	action_space ([Box, Discrete]) – the action space;

	gamma (float) – the discount factor;

	horizon (int) – the horizon.

	
size

	The sum of the number of discrete states and discrete actions. Only
works for discrete spaces.

	Type

	Returns

	
shape

	The concatenation of the shape tuple of the state and action
spaces.

	Type

	Returns

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
class Environment(mdp_info)

	Bases: object

Basic interface used by any mushroom environment.

	
classmethod register()

	Register an environment in the environment list.

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
__init__(mdp_info)

	Constructor.

	Parameters

	mdp_info (MDPInfo) – an object containing the info of the
environment.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

Core

	
class Core(agent, mdp, callbacks_fit=None, callback_step=None, preprocessors=None)

	Bases: object

Implements the functions to run a generic algorithm.

	
__init__(agent, mdp, callbacks_fit=None, callback_step=None, preprocessors=None)

	Constructor.

	Parameters

	
	agent (Agent) – the agent moving according to a policy;

	mdp (Environment) – the environment in which the agent moves;

	callbacks_fit (list) – list of callbacks to execute at the end of
each fit;

	callback_step (Callback) – callback to execute after each step;

	preprocessors (list) – list of state preprocessors to be
applied to state variables before feeding them to the
agent.

	
learn(n_steps=None, n_episodes=None, n_steps_per_fit=None, n_episodes_per_fit=None, render=False, quiet=False)

	This function moves the agent in the environment and fits the policy
using the collected samples. The agent can be moved for a given number
of steps or a given number of episodes and, independently from this
choice, the policy can be fitted after a given number of steps or a
given number of episodes. By default, the environment is reset.

	Parameters

	
	n_steps (int, None) – number of steps to move the agent;

	n_episodes (int, None) – number of episodes to move the agent;

	n_steps_per_fit (int, None) – number of steps between each fit of the
policy;

	n_episodes_per_fit (int, None) – number of episodes between each fit
of the policy;

	render (bool, False) – whether to render the environment or not;

	quiet (bool, False) – whether to show the progress bar or not.

	
evaluate(initial_states=None, n_steps=None, n_episodes=None, render=False, quiet=False)

	This function moves the agent in the environment using its policy.
The agent is moved for a provided number of steps, episodes, or from
a set of initial states for the whole episode. By default, the
environment is reset.

	Parameters

	
	initial_states (np.ndarray, None) – the starting states of each
episode;

	n_steps (int, None) – number of steps to move the agent;

	n_episodes (int, None) – number of episodes to move the agent;

	render (bool, False) – whether to render the environment or not;

	quiet (bool, False) – whether to show the progress bar or not.

	
_step(render)

	Single step.

	Parameters

	render (bool) – whether to render or not.

	Returns

	A tuple containing the previous state, the action sampled by the
agent, the reward obtained, the reached state, the absorbing flag
of the reached state and the last step flag.

	
reset(initial_states=None)

	Reset the state of the agent.

	
_preprocess(state)

	Method to apply state preprocessors.

	Parameters

	state (np.ndarray) – the state to be preprocessed.

	Returns

	The preprocessed state.

Serialization

	
class Serializable

	Bases: object

Interface to implement serialization of a MushroomRL object.
This provide load and save functionality to save the object in a zip file.
It is possible to save the state of the agent with different levels of

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
__init__

	Initialize self. See help(type(self)) for accurate signature.

Logger

	
class Logger(log_name='', results_dir='./logs', log_console=False, use_timestamp=False, append=False, seed=None, **kwargs)

	Bases: mushroom_rl.core.logger.data_logger.DataLogger, mushroom_rl.core.logger.console_logger.ConsoleLogger

This class implements the logging functionality. It can be used to create
automatically a log directory, save numpy data array and the current agent.

	
__init__(log_name='', results_dir='./logs', log_console=False, use_timestamp=False, append=False, seed=None, **kwargs)

	Constructor.

	Parameters

	
	log_name (string, '') – name of the current experiment directory if not
specified, the current timestamp is used.

	results_dir (string, './logs') – name of the base logging directory.
If set to None, no directory is created;

	log_console (bool, False) – whether to log or not the console output;

	use_timestamp (bool, False) – If true, adds the current timestamp to
the folder name;

	append (bool, False) – If true, the logger will append the new
data logged to the one already existing in the directory;

	seed (int, None) – seed for the current run. It can be optionally
specified to add a seed suffix for each data file logged;

	**kwargs – other parameters for ConsoleLogger class.

	
critical(msg)

	Log a message with CRITICAL level

	
debug(msg)

	Log a message with DEBUG level

	
epoch_info(epoch, **kwargs)

	Log the epoch info with the format: Epoch <epoch number> | <label 1>: <data 1> <label 2> <data 2> …

	Parameters

	
	epoch (int) – epoch number;

	**kwargs – the labels and the data to be displayed.

	
error(msg)

	Log a message with ERROR level

	
exception(msg)

	Log a message with ERROR level. To be called
only from an exception handler

	
info(msg)

	Log a message with INFO level

	
log_agent(agent, epoch=None, full_save=False)

	Log agent into the log folder.

	Parameters

	
	agent (Agent) – The agent to be saved;

	epoch (int, None) – optional epoch number to
be added to the agent file currently saved;

	full_save (bool, False) – whether to save the full
data from the agent or not.

	
log_best_agent(agent, J, full_save=False)

	Log the best agent so far into the log folder. The agent
is logged only if the current performance is better
than the performance of the previously stored agent.

	Parameters

	
	agent (Agent) – The agent to be saved;

	J (float) – The performance metric of the current agent;

	full_save (bool, False) – whether to save the full
data from the agent or not.

	
log_numpy(**kwargs)

	Log scalars into numpy arrays.

	Parameters

	**kwargs – set of named scalar values to be saved. The argument name
will be used to identify the given quantity and as base file name.

	
path

	Property to return the path to the current logging directory

	
strong_line()

	Log a line of #

	
warning(msg)

	Log a message with WARNING level

	
weak_line()

	Log a line of -

	
class ConsoleLogger(log_name, log_dir=None, suffix='', log_file_name=None, console_log_level=10, file_log_level=10)

	Bases: object

This class implements the console logging functionality. It can be used to
log text into the console and optionally save a log file.

	
__init__(log_name, log_dir=None, suffix='', log_file_name=None, console_log_level=10, file_log_level=10)

	Constructor.

	Parameters

	
	log_name (str, None) – Name of the current logger.

	log_dir (Path, None) – path of the logging directory. If None, no
the console output is not logged into a file;

	suffix (int, None) – optional string to add a suffix to the logger id
and to the data file logged;

	log_file_name (str, None) – optional specifier for log file name,
id is used by default;

	console_log_level (int, logging.DEBUG) – logging level for console;

	file_log_level (int, logging.DEBUG) – logging level for file.

	
debug(msg)

	Log a message with DEBUG level

	
info(msg)

	Log a message with INFO level

	
warning(msg)

	Log a message with WARNING level

	
error(msg)

	Log a message with ERROR level

	
critical(msg)

	Log a message with CRITICAL level

	
exception(msg)

	Log a message with ERROR level. To be called
only from an exception handler

	
strong_line()

	Log a line of #

	
weak_line()

	Log a line of -

	
epoch_info(epoch, **kwargs)

	Log the epoch info with the format: Epoch <epoch number> | <label 1>: <data 1> <label 2> <data 2> …

	Parameters

	
	epoch (int) – epoch number;

	**kwargs – the labels and the data to be displayed.

	
class DataLogger(results_dir, suffix='', append=False)

	Bases: object

This class implements the data logging functionality. It can be used to create
automatically a log directory, save numpy data array and the current agent.

	
__init__(results_dir, suffix='', append=False)

	Constructor.

	Parameters

	
	results_dir (Path) – path of the logging directory;

	suffix (string) – optional string to add a suffix to each
data file logged;

	append (bool, False) – If true, the logger will append the new
data logged to the one already existing in the directory.

	
log_numpy(**kwargs)

	Log scalars into numpy arrays.

	Parameters

	**kwargs – set of named scalar values to be saved. The argument name
will be used to identify the given quantity and as base file name.

	
log_agent(agent, epoch=None, full_save=False)

	Log agent into the log folder.

	Parameters

	
	agent (Agent) – The agent to be saved;

	epoch (int, None) – optional epoch number to
be added to the agent file currently saved;

	full_save (bool, False) – whether to save the full
data from the agent or not.

	
log_best_agent(agent, J, full_save=False)

	Log the best agent so far into the log folder. The agent
is logged only if the current performance is better
than the performance of the previously stored agent.

	Parameters

	
	agent (Agent) – The agent to be saved;

	J (float) – The performance metric of the current agent;

	full_save (bool, False) – whether to save the full
data from the agent or not.

	
path

	Property to return the path to the current logging directory

Actor-Critic

Classical Actor-Critic Methods

	
class COPDAC_Q(mdp_info, policy, mu, alpha_theta, alpha_omega, alpha_v, value_function_features=None, policy_features=None)

	Bases: mushroom_rl.core.agent.Agent

Compatible off-policy deterministic actor-critic algorithm.
“Deterministic Policy Gradient Algorithms”.
Silver D. et al.. 2014.

	
__init__(mdp_info, policy, mu, alpha_theta, alpha_omega, alpha_v, value_function_features=None, policy_features=None)

	Constructor.

	Parameters

	
	mu (Regressor) – regressor that describe the deterministic policy to be
learned i.e., the deterministic mapping between state and action.

	alpha_theta ([float, Parameter]) – learning rate for policy update;

	alpha_omega ([float, Parameter]) – learning rate for the advantage function;

	alpha_v ([float, Parameter]) – learning rate for the value function;

	value_function_features (Features, None) – features used by the value
function approximator;

	policy_features (Features, None) – features used by the policy.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class StochasticAC(mdp_info, policy, alpha_theta, alpha_v, lambda_par=0.9, value_function_features=None, policy_features=None)

	Bases: mushroom_rl.core.agent.Agent

Stochastic Actor critic in the episodic setting as presented in:
“Model-Free Reinforcement Learning with Continuous Action in Practice”.
Degris T. et al.. 2012.

	
__init__(mdp_info, policy, alpha_theta, alpha_v, lambda_par=0.9, value_function_features=None, policy_features=None)

	Constructor.

	Parameters

	
	alpha_theta ([float, Parameter]) – learning rate for policy update;

	alpha_v ([float, Parameter]) – learning rate for the value function;

	lambda_par ([float, Parameter], 9) – trace decay parameter;

	value_function_features (Features, None) – features used by the
value function approximator;

	policy_features (Features, None) – features used by the policy.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class StochasticAC_AVG(mdp_info, policy, alpha_theta, alpha_v, alpha_r, lambda_par=0.9, value_function_features=None, policy_features=None)

	Bases: mushroom_rl.algorithms.actor_critic.classic_actor_critic.stochastic_ac.StochasticAC

Stochastic Actor critic in the average reward setting as presented in:
“Model-Free Reinforcement Learning with Continuous Action in Practice”.
Degris T. et al.. 2012.

	
__init__(mdp_info, policy, alpha_theta, alpha_v, alpha_r, lambda_par=0.9, value_function_features=None, policy_features=None)

	Constructor.

	Parameters

	alpha_r (Parameter) – learning rate for the reward trace.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

Deep Actor-Critic Methods

	
class DeepAC(mdp_info, policy, actor_optimizer, parameters)

	Bases: mushroom_rl.core.agent.Agent

Base class for algorithms that uses the reparametrization trick, such as
SAC, DDPG and TD3.

	
__init__(mdp_info, policy, actor_optimizer, parameters)

	Constructor.

	Parameters

	
	actor_optimizer (dict) – parameters to specify the actor optimizer
algorithm;

	parameters (list) – policy parameters to be optimized.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_optimize_actor_parameters(loss)

	Method used to update actor parameters to maximize a given loss.

	Parameters

	loss (torch.tensor) – the loss computed by the algorithm.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class A2C(mdp_info, policy, actor_optimizer, critic_params, ent_coeff, max_grad_norm=None, critic_fit_params=None)

	Bases: mushroom_rl.algorithms.actor_critic.deep_actor_critic.deep_actor_critic.DeepAC

Advantage Actor Critic algorithm (A2C).
Synchronous version of the A3C algorithm.
“Asynchronous Methods for Deep Reinforcement Learning”.
Mnih V. et. al.. 2016.

	
__init__(mdp_info, policy, actor_optimizer, critic_params, ent_coeff, max_grad_norm=None, critic_fit_params=None)

	Constructor.

	Parameters

	
	policy (TorchPolicy) – torch policy to be learned by the algorithm;

	actor_optimizer (dict) – parameters to specify the actor optimizer
algorithm;

	critic_params (dict) – parameters of the critic approximator to
build;

	ent_coeff ([float, Parameter], 0) – coefficient for the entropy penalty;

	max_grad_norm (float, None) – maximum norm for gradient clipping.
If None, no clipping will be performed, unless specified
otherwise in actor_optimizer;

	critic_fit_params (dict, None) – parameters of the fitting algorithm
of the critic approximator.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_optimize_actor_parameters(loss)

	Method used to update actor parameters to maximize a given loss.

	Parameters

	loss (torch.tensor) – the loss computed by the algorithm.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class DDPG(mdp_info, policy_class, policy_params, actor_params, actor_optimizer, critic_params, batch_size, initial_replay_size, max_replay_size, tau, policy_delay=1, critic_fit_params=None, actor_predict_params=None, critic_predict_params=None)

	Bases: mushroom_rl.algorithms.actor_critic.deep_actor_critic.deep_actor_critic.DeepAC

Deep Deterministic Policy Gradient algorithm.
“Continuous Control with Deep Reinforcement Learning”.
Lillicrap T. P. et al.. 2016.

	
__init__(mdp_info, policy_class, policy_params, actor_params, actor_optimizer, critic_params, batch_size, initial_replay_size, max_replay_size, tau, policy_delay=1, critic_fit_params=None, actor_predict_params=None, critic_predict_params=None)

	Constructor.

	Parameters

	
	policy_class (Policy) – class of the policy;

	policy_params (dict) – parameters of the policy to build;

	actor_params (dict) – parameters of the actor approximator to
build;

	actor_optimizer (dict) – parameters to specify the actor optimizer
algorithm;

	critic_params (dict) – parameters of the critic approximator to
build;

	batch_size ([int, Parameter]) – the number of samples in a batch;

	initial_replay_size (int) – the number of samples to collect before
starting the learning;

	max_replay_size (int) – the maximum number of samples in the replay
memory;

	tau ((float, Parameter)) – value of coefficient for soft updates;

	policy_delay ([int, Parameter], 1) – the number of updates of the critic after
which an actor update is implemented;

	critic_fit_params (dict, None) – parameters of the fitting algorithm
of the critic approximator;

	actor_predict_params (dict, None) – parameters for the prediction with the
actor approximator;

	critic_predict_params (dict, None) – parameters for the prediction with the
critic approximator.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Action-values returned by the critic for next_state and the
action returned by the actor.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_optimize_actor_parameters(loss)

	Method used to update actor parameters to maximize a given loss.

	Parameters

	loss (torch.tensor) – the loss computed by the algorithm.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class TD3(mdp_info, policy_class, policy_params, actor_params, actor_optimizer, critic_params, batch_size, initial_replay_size, max_replay_size, tau, policy_delay=2, noise_std=0.2, noise_clip=0.5, critic_fit_params=None)

	Bases: mushroom_rl.algorithms.actor_critic.deep_actor_critic.ddpg.DDPG

Twin Delayed DDPG algorithm.
“Addressing Function Approximation Error in Actor-Critic Methods”.
Fujimoto S. et al.. 2018.

	
__init__(mdp_info, policy_class, policy_params, actor_params, actor_optimizer, critic_params, batch_size, initial_replay_size, max_replay_size, tau, policy_delay=2, noise_std=0.2, noise_clip=0.5, critic_fit_params=None)

	Constructor.

	Parameters

	
	policy_class (Policy) – class of the policy;

	policy_params (dict) – parameters of the policy to build;

	actor_params (dict) – parameters of the actor approximator to
build;

	actor_optimizer (dict) – parameters to specify the actor
optimizer algorithm;

	critic_params (dict) – parameters of the critic approximator to
build;

	batch_size ([int, Parameter]) – the number of samples in a batch;

	initial_replay_size (int) – the number of samples to collect before
starting the learning;

	max_replay_size (int) – the maximum number of samples in the replay
memory;

	tau ([float, Parameter]) – value of coefficient for soft updates;

	policy_delay ([int, Parameter], 2) – the number of updates of the critic after
which an actor update is implemented;

	noise_std ([float, Parameter], 2) – standard deviation of the noise used for
policy smoothing;

	noise_clip ([float, Parameter], 5) – maximum absolute value for policy smoothing
noise;

	critic_fit_params (dict, None) – parameters of the fitting algorithm
of the critic approximator.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Action-values returned by the critic for next_state and the
action returned by the actor.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_optimize_actor_parameters(loss)

	Method used to update actor parameters to maximize a given loss.

	Parameters

	loss (torch.tensor) – the loss computed by the algorithm.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class SAC(mdp_info, actor_mu_params, actor_sigma_params, actor_optimizer, critic_params, batch_size, initial_replay_size, max_replay_size, warmup_transitions, tau, lr_alpha, log_std_min=-20, log_std_max=2, target_entropy=None, critic_fit_params=None)

	Bases: mushroom_rl.algorithms.actor_critic.deep_actor_critic.deep_actor_critic.DeepAC

Soft Actor-Critic algorithm.
“Soft Actor-Critic Algorithms and Applications”.
Haarnoja T. et al.. 2019.

	
__init__(mdp_info, actor_mu_params, actor_sigma_params, actor_optimizer, critic_params, batch_size, initial_replay_size, max_replay_size, warmup_transitions, tau, lr_alpha, log_std_min=-20, log_std_max=2, target_entropy=None, critic_fit_params=None)

	Constructor.

	Parameters

	
	actor_mu_params (dict) – parameters of the actor mean approximator
to build;

	actor_sigma_params (dict) – parameters of the actor sigm
approximator to build;

	actor_optimizer (dict) – parameters to specify the actor
optimizer algorithm;

	critic_params (dict) – parameters of the critic approximator to
build;

	batch_size ((int, Parameter)) – the number of samples in a batch;

	initial_replay_size (int) – the number of samples to collect before
starting the learning;

	max_replay_size (int) – the maximum number of samples in the replay
memory;

	warmup_transitions ([int, Parameter]) – number of samples to accumulate in the
replay memory to start the policy fitting;

	tau ([float, Parameter]) – value of coefficient for soft updates;

	lr_alpha ([float, Parameter]) – Learning rate for the entropy coefficient;

	log_std_min ([float, Parameter]) – Min value for the policy log std;

	log_std_max ([float, Parameter]) – Max value for the policy log std;

	target_entropy (float, None) – target entropy for the policy, if
None a default value is computed ;

	critic_fit_params (dict, None) – parameters of the fitting algorithm
of the critic approximator.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Action-values returned by the critic for next_state and the
action returned by the actor.

	
_optimize_actor_parameters(loss)

	Method used to update actor parameters to maximize a given loss.

	Parameters

	loss (torch.tensor) – the loss computed by the algorithm.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
class TRPO(mdp_info, policy, critic_params, ent_coeff=0.0, max_kl=0.001, lam=1.0, n_epochs_line_search=10, n_epochs_cg=10, cg_damping=0.01, cg_residual_tol=1e-10, critic_fit_params=None)

	Bases: mushroom_rl.core.agent.Agent

Trust Region Policy optimization algorithm.
“Trust Region Policy Optimization”.
Schulman J. et al.. 2015.

	
__init__(mdp_info, policy, critic_params, ent_coeff=0.0, max_kl=0.001, lam=1.0, n_epochs_line_search=10, n_epochs_cg=10, cg_damping=0.01, cg_residual_tol=1e-10, critic_fit_params=None)

	Constructor.

	Parameters

	
	policy (TorchPolicy) – torch policy to be learned by the algorithm

	critic_params (dict) – parameters of the critic approximator to
build;

	ent_coeff ([float, Parameter], 0) – coefficient for the entropy penalty;

	max_kl ([float, Parameter], 001) – maximum kl allowed for every policy
update;

	float (lam) – lambda coefficient used by generalized
advantage estimation;

	n_epochs_line_search ([int, Parameter], 10) – maximum number of iterations
of the line search algorithm;

	n_epochs_cg ([int, Parameter], 10) – maximum number of iterations of the
conjugate gradient algorithm;

	cg_damping ([float, Parameter], 1e-2) – damping factor for the conjugate
gradient algorithm;

	cg_residual_tol ([float, Parameter], 1e-10) – conjugate gradient residual
tolerance;

	critic_fit_params (dict, None) – parameters of the fitting algorithm
of the critic approximator.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class PPO(mdp_info, policy, actor_optimizer, critic_params, n_epochs_policy, batch_size, eps_ppo, lam, ent_coeff=0.0, critic_fit_params=None)

	Bases: mushroom_rl.core.agent.Agent

Proximal Policy Optimization algorithm.
“Proximal Policy Optimization Algorithms”.
Schulman J. et al.. 2017.

	
__init__(mdp_info, policy, actor_optimizer, critic_params, n_epochs_policy, batch_size, eps_ppo, lam, ent_coeff=0.0, critic_fit_params=None)

	Constructor.

	Parameters

	
	policy (TorchPolicy) – torch policy to be learned by the algorithm

	actor_optimizer (dict) – parameters to specify the actor optimizer
algorithm;

	critic_params (dict) – parameters of the critic approximator to
build;

	n_epochs_policy ([int, Parameter]) – number of policy updates for every dataset;

	batch_size ([int, Parameter]) – size of minibatches for every optimization step

	eps_ppo ([float, Parameter]) – value for probability ratio clipping;

	lam ([float, Parameter], 1.) – lambda coefficient used by generalized
advantage estimation;

	ent_coeff ([float, Parameter], 1.) – coefficient for the entropy regularization term;

	critic_fit_params (dict, None) – parameters of the fitting algorithm
of the critic approximator.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

Policy search

Policy gradient

	
class REINFORCE(mdp_info, policy, optimizer, features=None)

	Bases: mushroom_rl.algorithms.policy_search.policy_gradient.policy_gradient.PolicyGradient

REINFORCE algorithm.
“Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning”, Williams R. J.. 1992.

	
__init__(mdp_info, policy, optimizer, features=None)

	Constructor.

	Parameters

	optimizer – the gradient optimizer.

	
_compute_gradient(J)

	Return the gradient computed by the algorithm.

	Parameters

	J (list) – list of the cumulative discounted rewards for each
episode in the dataset.

	Returns

	The gradient computed by the algorithm.

	
_step_update(x, u, r)

	This function is called, when parsing the dataset, at each episode step.

	Parameters

	
	x (np.ndarray) – the state at the current step;

	u (np.ndarray) – the action at the current step;

	r (np.ndarray) – the reward at the current step.

	
_episode_end_update()

	This function is called, when parsing the dataset, at the beginning
of each episode. The implementation is dependent on the algorithm (e.g.
REINFORCE updates some data structures).

	
_init_update()

	This function is called, when parsing the dataset, at the beginning
of each episode. The implementation is dependent on the algorithm (e.g.
REINFORCE resets some data structure).

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_parse(sample)

	Utility to parse the sample.

	Parameters

	sample (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag. If provided, state is preprocessed with the features.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_update_parameters(J)

	Update the parameters of the policy.

	Parameters

	J (list) – list of the cumulative discounted rewards for each
episode in the dataset.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class GPOMDP(mdp_info, policy, optimizer, features=None)

	Bases: mushroom_rl.algorithms.policy_search.policy_gradient.policy_gradient.PolicyGradient

GPOMDP algorithm.
“Infinite-Horizon Policy-Gradient Estimation”. Baxter J. and Bartlett P. L..
2001.

	
__init__(mdp_info, policy, optimizer, features=None)

	Constructor.

	Parameters

	optimizer – the gradient optimizer.

	
_compute_gradient(J)

	Return the gradient computed by the algorithm.

	Parameters

	J (list) – list of the cumulative discounted rewards for each
episode in the dataset.

	Returns

	The gradient computed by the algorithm.

	
_step_update(x, u, r)

	This function is called, when parsing the dataset, at each episode step.

	Parameters

	
	x (np.ndarray) – the state at the current step;

	u (np.ndarray) – the action at the current step;

	r (np.ndarray) – the reward at the current step.

	
_episode_end_update()

	This function is called, when parsing the dataset, at the beginning
of each episode. The implementation is dependent on the algorithm (e.g.
REINFORCE updates some data structures).

	
_init_update()

	This function is called, when parsing the dataset, at the beginning
of each episode. The implementation is dependent on the algorithm (e.g.
REINFORCE resets some data structure).

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_parse(sample)

	Utility to parse the sample.

	Parameters

	sample (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag. If provided, state is preprocessed with the features.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_update_parameters(J)

	Update the parameters of the policy.

	Parameters

	J (list) – list of the cumulative discounted rewards for each
episode in the dataset.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class eNAC(mdp_info, policy, optimizer, features=None, critic_features=None)

	Bases: mushroom_rl.algorithms.policy_search.policy_gradient.policy_gradient.PolicyGradient

Episodic Natural Actor Critic algorithm.
“A Survey on Policy Search for Robotics”, Deisenroth M. P., Neumann G.,
Peters J. 2013.

	
__init__(mdp_info, policy, optimizer, features=None, critic_features=None)

	Constructor.

	Parameters

	critic_features (Features, None) – features used by the critic.

	
_compute_gradient(J)

	Return the gradient computed by the algorithm.

	Parameters

	J (list) – list of the cumulative discounted rewards for each
episode in the dataset.

	Returns

	The gradient computed by the algorithm.

	
_step_update(x, u, r)

	This function is called, when parsing the dataset, at each episode step.

	Parameters

	
	x (np.ndarray) – the state at the current step;

	u (np.ndarray) – the action at the current step;

	r (np.ndarray) – the reward at the current step.

	
_episode_end_update()

	This function is called, when parsing the dataset, at the beginning
of each episode. The implementation is dependent on the algorithm (e.g.
REINFORCE updates some data structures).

	
_init_update()

	This function is called, when parsing the dataset, at the beginning
of each episode. The implementation is dependent on the algorithm (e.g.
REINFORCE resets some data structure).

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_parse(sample)

	Utility to parse the sample.

	Parameters

	sample (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag. If provided, state is preprocessed with the features.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_update_parameters(J)

	Update the parameters of the policy.

	Parameters

	J (list) – list of the cumulative discounted rewards for each
episode in the dataset.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

Black-Box optimization

	
class RWR(mdp_info, distribution, policy, beta, features=None)

	Bases: mushroom_rl.algorithms.policy_search.black_box_optimization.black_box_optimization.BlackBoxOptimization

Reward-Weighted Regression algorithm.
“A Survey on Policy Search for Robotics”, Deisenroth M. P., Neumann G.,
Peters J.. 2013.

	
__init__(mdp_info, distribution, policy, beta, features=None)

	Constructor.

	Parameters

	beta ([float, Parameter]) – the temperature for the exponential reward
transformation.

	
_update(Jep, theta)

	Function that implements the update routine of distribution parameters.
Every black box algorithms should implement this function with the
proper update.

	Parameters

	
	Jep (np.ndarray) – a vector containing the J of the considered
trajectories;

	theta (np.ndarray) – a matrix of policy parameters of the considered
trajectories.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class PGPE(mdp_info, distribution, policy, optimizer, features=None)

	Bases: mushroom_rl.algorithms.policy_search.black_box_optimization.black_box_optimization.BlackBoxOptimization

Policy Gradient with Parameter Exploration algorithm.
“A Survey on Policy Search for Robotics”, Deisenroth M. P., Neumann G.,
Peters J.. 2013.

	
__init__(mdp_info, distribution, policy, optimizer, features=None)

	Constructor.

	Parameters

	optimizer – the gradient step optimizer.

	
_update(Jep, theta)

	Function that implements the update routine of distribution parameters.
Every black box algorithms should implement this function with the
proper update.

	Parameters

	
	Jep (np.ndarray) – a vector containing the J of the considered
trajectories;

	theta (np.ndarray) – a matrix of policy parameters of the considered
trajectories.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class REPS(mdp_info, distribution, policy, eps, features=None)

	Bases: mushroom_rl.algorithms.policy_search.black_box_optimization.black_box_optimization.BlackBoxOptimization

Episodic Relative Entropy Policy Search algorithm.
“A Survey on Policy Search for Robotics”, Deisenroth M. P., Neumann G.,
Peters J.. 2013.

	
__init__(mdp_info, distribution, policy, eps, features=None)

	Constructor.

	Parameters

	eps ([float, Parameter]) – the maximum admissible value for the Kullback-Leibler
divergence between the new distribution and the
previous one at each update step.

	
_update(Jep, theta)

	Function that implements the update routine of distribution parameters.
Every black box algorithms should implement this function with the
proper update.

	Parameters

	
	Jep (np.ndarray) – a vector containing the J of the considered
trajectories;

	theta (np.ndarray) – a matrix of policy parameters of the considered
trajectories.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class ConstrainedREPS(mdp_info, distribution, policy, eps, kappa, features=None)

	Bases: mushroom_rl.algorithms.policy_search.black_box_optimization.black_box_optimization.BlackBoxOptimization

Episodic Relative Entropy Policy Search algorithm with constrained policy update.

	
__init__(mdp_info, distribution, policy, eps, kappa, features=None)

	Constructor.

	Parameters

	
	eps ([float, Parameter]) – the maximum admissible value for the Kullback-Leibler
divergence between the new distribution and the
previous one at each update step.

	kappa ([float, Parameter]) – the maximum admissible value for the entropy decrease
between the new distribution and the
previous one at each update step.

	
_update(Jep, theta)

	Function that implements the update routine of distribution parameters.
Every black box algorithms should implement this function with the
proper update.

	Parameters

	
	Jep (np.ndarray) – a vector containing the J of the considered
trajectories;

	theta (np.ndarray) – a matrix of policy parameters of the considered
trajectories.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

Value-Based

TD

	
class SARSA(mdp_info, policy, learning_rate)

	Bases: mushroom_rl.algorithms.value.td.td.TD

SARSA algorithm.

	
__init__(mdp_info, policy, learning_rate)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	learning_rate (Parameter) – the learning rate.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class SARSALambda(mdp_info, policy, learning_rate, lambda_coeff, trace='replacing')

	Bases: mushroom_rl.algorithms.value.td.td.TD

The SARSA(lambda) algorithm for finite MDPs.

	
__init__(mdp_info, policy, learning_rate, lambda_coeff, trace='replacing')

	Constructor.

	Parameters

	
	lambda_coeff ([float, Parameter]) – eligibility trace coefficient;

	trace (str, 'replacing') – type of eligibility trace to use.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
episode_start()

	Called by the agent when a new episode starts.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class ExpectedSARSA(mdp_info, policy, learning_rate)

	Bases: mushroom_rl.algorithms.value.td.td.TD

Expected SARSA algorithm.
“A theoretical and empirical analysis of Expected Sarsa”. Seijen H. V. et
al.. 2009.

	
__init__(mdp_info, policy, learning_rate)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	learning_rate (Parameter) – the learning rate.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class QLearning(mdp_info, policy, learning_rate)

	Bases: mushroom_rl.algorithms.value.td.td.TD

Q-Learning algorithm.
“Learning from Delayed Rewards”. Watkins C.J.C.H.. 1989.

	
__init__(mdp_info, policy, learning_rate)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	learning_rate (Parameter) – the learning rate.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class QLambda(mdp_info, policy, learning_rate, lambda_coeff, trace='replacing')

	Bases: mushroom_rl.algorithms.value.td.td.TD

Q(Lambda) algorithm.
“Learning from Delayed Rewards”. Watkins C.J.C.H.. 1989.

	
__init__(mdp_info, policy, learning_rate, lambda_coeff, trace='replacing')

	Constructor.

	Parameters

	
	lambda_coeff ([float, Parameter]) – eligibility trace coefficient;

	trace (str, 'replacing') – type of eligibility trace to use.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
episode_start()

	Called by the agent when a new episode starts.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class DoubleQLearning(mdp_info, policy, learning_rate)

	Bases: mushroom_rl.algorithms.value.td.td.TD

Double Q-Learning algorithm.
“Double Q-Learning”. Hasselt H. V.. 2010.

	
__init__(mdp_info, policy, learning_rate)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	learning_rate (Parameter) – the learning rate.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class SpeedyQLearning(mdp_info, policy, learning_rate)

	Bases: mushroom_rl.algorithms.value.td.td.TD

Speedy Q-Learning algorithm.
“Speedy Q-Learning”. Ghavamzadeh et. al.. 2011.

	
__init__(mdp_info, policy, learning_rate)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	learning_rate (Parameter) – the learning rate.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class RLearning(mdp_info, policy, learning_rate, beta)

	Bases: mushroom_rl.algorithms.value.td.td.TD

R-Learning algorithm.
“A Reinforcement Learning Method for Maximizing Undiscounted Rewards”.
Schwartz A.. 1993.

	
__init__(mdp_info, policy, learning_rate, beta)

	Constructor.

	Parameters

	beta ([float, Parameter]) – beta coefficient.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class WeightedQLearning(mdp_info, policy, learning_rate, sampling=True, precision=1000)

	Bases: mushroom_rl.algorithms.value.td.td.TD

Weighted Q-Learning algorithm.
“Estimating the Maximum Expected Value through Gaussian Approximation”.
D’Eramo C. et. al.. 2016.

	
__init__(mdp_info, policy, learning_rate, sampling=True, precision=1000)

	Constructor.

	Parameters

	
	sampling (bool, True) – use the approximated version to speed up
the computation;

	precision (int, 1000) – number of samples to use in the approximated
version.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
_next_q(next_state)

	
	Parameters

	next_state (np.ndarray) – the state where next action has to be
evaluated.

	Returns

	The weighted estimator value in next_state.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class MaxminQLearning(mdp_info, policy, learning_rate, n_tables)

	Bases: mushroom_rl.algorithms.value.td.td.TD

Maxmin Q-Learning algorithm without replay memory.
“Maxmin Q-learning: Controlling the Estimation Bias of Q-learning”.
Lan Q. et al. 2019.

	
__init__(mdp_info, policy, learning_rate, n_tables)

	Constructor.

	Parameters

	n_tables (int) – number of tables in the ensemble.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class RQLearning(mdp_info, policy, learning_rate, off_policy=False, beta=None, delta=None)

	Bases: mushroom_rl.algorithms.value.td.td.TD

RQ-Learning algorithm.
“Exploiting Structure and Uncertainty of Bellman Updates in Markov Decision
Processes”. Tateo D. et al.. 2017.

	
__init__(mdp_info, policy, learning_rate, off_policy=False, beta=None, delta=None)

	Constructor.

	Parameters

	
	off_policy (bool, False) – whether to use the off policy setting or
the online one;

	beta ([float, Parameter], None) – beta coefficient;

	delta ([float, Parameter], None) – delta coefficient.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
_next_q(next_state)

	
	Parameters

	next_state (np.ndarray) – the state where next action has to be
evaluated.

	Returns

	The weighted estimator value in ‘next_state’.

	
class SARSALambdaContinuous(mdp_info, policy, approximator, learning_rate, lambda_coeff, features, approximator_params=None)

	Bases: mushroom_rl.algorithms.value.td.td.TD

Continuous version of SARSA(lambda) algorithm.

	
__init__(mdp_info, policy, approximator, learning_rate, lambda_coeff, features, approximator_params=None)

	Constructor.

	Parameters

	lambda_coeff ([float, Parameter]) – eligibility trace coefficient.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
episode_start()

	Called by the agent when a new episode starts.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class TrueOnlineSARSALambda(mdp_info, policy, learning_rate, lambda_coeff, features, approximator_params=None)

	Bases: mushroom_rl.algorithms.value.td.td.TD

True Online SARSA(lambda) with linear function approximation.
“True Online TD(lambda)”. Seijen H. V. et al.. 2014.

	
__init__(mdp_info, policy, learning_rate, lambda_coeff, features, approximator_params=None)

	Constructor.

	Parameters

	lambda_coeff ([float, Parameter]) – eligibility trace coefficient.

	
_update(state, action, reward, next_state, absorbing)

	Update the Q-table.

	Parameters

	
	state (np.ndarray) – state;

	action (np.ndarray) – action;

	reward (np.ndarray) – reward;

	next_state (np.ndarray) – next state;

	absorbing (np.ndarray) – absorbing flag.

	
episode_start()

	Called by the agent when a new episode starts.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
static _parse(dataset)

	Utility to parse the dataset that is supposed to contain only a sample.

	Parameters

	dataset (list) – the current episode step.

	Returns

	A tuple containing state, action, reward, next state, absorbing and
last flag.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

Batch TD

	
class FQI(mdp_info, policy, approximator, n_iterations, approximator_params=None, fit_params=None, quiet=False)

	Bases: mushroom_rl.algorithms.value.batch_td.batch_td.BatchTD

Fitted Q-Iteration algorithm.
“Tree-Based Batch Mode Reinforcement Learning”, Ernst D. et al.. 2005.

	
__init__(mdp_info, policy, approximator, n_iterations, approximator_params=None, fit_params=None, quiet=False)

	Constructor.

	Parameters

	
	n_iterations ([int, Parameter]) – number of iterations to perform for training;

	quiet (bool, False) – whether to show the progress bar or not.

	
fit(x)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class DoubleFQI(mdp_info, policy, approximator, n_iterations, approximator_params=None, fit_params=None, quiet=False)

	Bases: mushroom_rl.algorithms.value.batch_td.fqi.FQI

Double Fitted Q-Iteration algorithm.
“Estimating the Maximum Expected Value in Continuous Reinforcement Learning
Problems”. D’Eramo C. et al.. 2017.

	
__init__(mdp_info, policy, approximator, n_iterations, approximator_params=None, fit_params=None, quiet=False)

	Constructor.

	Parameters

	
	n_iterations ([int, Parameter]) – number of iterations to perform for training;

	quiet (bool, False) – whether to show the progress bar or not.

	
fit(x)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class BoostedFQI(mdp_info, policy, approximator, n_iterations, approximator_params=None, fit_params=None, quiet=False)

	Bases: mushroom_rl.algorithms.value.batch_td.fqi.FQI

Boosted Fitted Q-Iteration algorithm.
“Boosted Fitted Q-Iteration”. Tosatto S. et al.. 2017.

	
__init__(mdp_info, policy, approximator, n_iterations, approximator_params=None, fit_params=None, quiet=False)

	Constructor.

	Parameters

	
	n_iterations ([int, Parameter]) – number of iterations to perform for training;

	quiet (bool, False) – whether to show the progress bar or not.

	
fit(x)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class LSPI(mdp_info, policy, approximator_params=None, epsilon=0.01, fit_params=None, features=None)

	Bases: mushroom_rl.algorithms.value.batch_td.batch_td.BatchTD

Least-Squares Policy Iteration algorithm.
“Least-Squares Policy Iteration”. Lagoudakis M. G. and Parr R.. 2003.

	
__init__(mdp_info, policy, approximator_params=None, epsilon=0.01, fit_params=None, features=None)

	Constructor.

	Parameters

	epsilon ([float, Parameter], 1e-2) – termination coefficient.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger)

	Setter that can be used to pass a logger to the algorithm

	Parameters

	logger (Logger) – the logger to be used by the algorithm.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

DQN

	
class AbstractDQN(mdp_info, policy, approximator, approximator_params, batch_size, target_update_frequency, replay_memory=None, initial_replay_size=500, max_replay_size=5000, fit_params=None, predict_params=None, clip_reward=False)

	Bases: mushroom_rl.core.agent.Agent

	
__init__(mdp_info, policy, approximator, approximator_params, batch_size, target_update_frequency, replay_memory=None, initial_replay_size=500, max_replay_size=5000, fit_params=None, predict_params=None, clip_reward=False)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	approximator_params (dict) – parameters of the approximator to
build;

	batch_size ([int, Parameter]) – the number of samples in a batch;

	target_update_frequency (int) – the number of samples collected
between each update of the target network;

	replay_memory ([ReplayMemory, PrioritizedReplayMemory], None) – the
object of the replay memory to use; if None, a default replay
memory is created;

	initial_replay_size (int) – the number of samples to collect before
starting the learning;

	max_replay_size (int) – the maximum number of samples in the replay
memory;

	fit_params (dict, None) – parameters of the fitting algorithm of the
approximator;

	predict_params (dict, None) – parameters for the prediction with the
approximator;

	clip_reward (bool, False) – whether to clip the reward or not.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
_update_target()

	Update the target network.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Maximum action-value for each state in next_state.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
episode_start()

	Called by the agent when a new episode starts.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
set_logger(logger, loss_filename='loss_Q')

	Setter that can be used to pass a logger to the algorithm

	Parameters

	
	logger (Logger) – the logger to be used by the algorithm;

	loss_filename (str, 'loss_Q') – optional string to specify the loss filename.

	
class DQN(mdp_info, policy, approximator, approximator_params, batch_size, target_update_frequency, replay_memory=None, initial_replay_size=500, max_replay_size=5000, fit_params=None, predict_params=None, clip_reward=False)

	Bases: mushroom_rl.algorithms.value.dqn.abstract_dqn.AbstractDQN

Deep Q-Network algorithm.
“Human-Level Control Through Deep Reinforcement Learning”.
Mnih V. et al.. 2015.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Maximum action-value for each state in next_state.

	
__init__(mdp_info, policy, approximator, approximator_params, batch_size, target_update_frequency, replay_memory=None, initial_replay_size=500, max_replay_size=5000, fit_params=None, predict_params=None, clip_reward=False)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	approximator_params (dict) – parameters of the approximator to
build;

	batch_size ([int, Parameter]) – the number of samples in a batch;

	target_update_frequency (int) – the number of samples collected
between each update of the target network;

	replay_memory ([ReplayMemory, PrioritizedReplayMemory], None) – the
object of the replay memory to use; if None, a default replay
memory is created;

	initial_replay_size (int) – the number of samples to collect before
starting the learning;

	max_replay_size (int) – the maximum number of samples in the replay
memory;

	fit_params (dict, None) – parameters of the fitting algorithm of the
approximator;

	predict_params (dict, None) – parameters for the prediction with the
approximator;

	clip_reward (bool, False) – whether to clip the reward or not.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_update_target()

	Update the target network.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger, loss_filename='loss_Q')

	Setter that can be used to pass a logger to the algorithm

	Parameters

	
	logger (Logger) – the logger to be used by the algorithm;

	loss_filename (str, 'loss_Q') – optional string to specify the loss filename.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class DoubleDQN(mdp_info, policy, approximator, approximator_params, batch_size, target_update_frequency, replay_memory=None, initial_replay_size=500, max_replay_size=5000, fit_params=None, predict_params=None, clip_reward=False)

	Bases: mushroom_rl.algorithms.value.dqn.dqn.DQN

Double DQN algorithm.
“Deep Reinforcement Learning with Double Q-Learning”.
Hasselt H. V. et al.. 2016.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Maximum action-value for each state in next_state.

	
__init__(mdp_info, policy, approximator, approximator_params, batch_size, target_update_frequency, replay_memory=None, initial_replay_size=500, max_replay_size=5000, fit_params=None, predict_params=None, clip_reward=False)

	Constructor.

	Parameters

	
	approximator (object) – the approximator to use to fit the
Q-function;

	approximator_params (dict) – parameters of the approximator to
build;

	batch_size ([int, Parameter]) – the number of samples in a batch;

	target_update_frequency (int) – the number of samples collected
between each update of the target network;

	replay_memory ([ReplayMemory, PrioritizedReplayMemory], None) – the
object of the replay memory to use; if None, a default replay
memory is created;

	initial_replay_size (int) – the number of samples to collect before
starting the learning;

	max_replay_size (int) – the maximum number of samples in the replay
memory;

	fit_params (dict, None) – parameters of the fitting algorithm of the
approximator;

	predict_params (dict, None) – parameters for the prediction with the
approximator;

	clip_reward (bool, False) – whether to clip the reward or not.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_update_target()

	Update the target network.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger, loss_filename='loss_Q')

	Setter that can be used to pass a logger to the algorithm

	Parameters

	
	logger (Logger) – the logger to be used by the algorithm;

	loss_filename (str, 'loss_Q') – optional string to specify the loss filename.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class AveragedDQN(mdp_info, policy, approximator, n_approximators, **params)

	Bases: mushroom_rl.algorithms.value.dqn.abstract_dqn.AbstractDQN

Averaged-DQN algorithm.
“Averaged-DQN: Variance Reduction and Stabilization for Deep Reinforcement
Learning”. Anschel O. et al.. 2017.

	
__init__(mdp_info, policy, approximator, n_approximators, **params)

	Constructor.

	Parameters

	n_approximators (int) – the number of target approximators to store.

	
_update_target()

	Update the target network.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Maximum action-value for each state in next_state.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger, loss_filename='loss_Q')

	Setter that can be used to pass a logger to the algorithm

	Parameters

	
	logger (Logger) – the logger to be used by the algorithm;

	loss_filename (str, 'loss_Q') – optional string to specify the loss filename.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class MaxminDQN(mdp_info, policy, approximator, n_approximators, **params)

	Bases: mushroom_rl.algorithms.value.dqn.dqn.DQN

MaxminDQN algorithm.
“Maxmin Q-learning: Controlling the Estimation Bias of Q-learning”.
Lan Q. et al.. 2020.

	
__init__(mdp_info, policy, approximator, n_approximators, **params)

	Constructor.

	Parameters

	n_approximators (int) – the number of approximators in the ensemble.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
_update_target()

	Update the target network.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Maximum action-value for each state in next_state.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger, loss_filename='loss_Q')

	Setter that can be used to pass a logger to the algorithm

	Parameters

	
	logger (Logger) – the logger to be used by the algorithm;

	loss_filename (str, 'loss_Q') – optional string to specify the loss filename.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class DuelingDQN(mdp_info, policy, approximator_params, avg_advantage=True, **params)

	Bases: mushroom_rl.algorithms.value.dqn.dqn.DQN

Dueling DQN algorithm.
“Dueling Network Architectures for Deep Reinforcement Learning”.
Wang Z. et al.. 2016.

	
__init__(mdp_info, policy, approximator_params, avg_advantage=True, **params)

	Constructor.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Maximum action-value for each state in next_state.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_update_target()

	Update the target network.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger, loss_filename='loss_Q')

	Setter that can be used to pass a logger to the algorithm

	Parameters

	
	logger (Logger) – the logger to be used by the algorithm;

	loss_filename (str, 'loss_Q') – optional string to specify the loss filename.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class CategoricalDQN(mdp_info, policy, approximator_params, n_atoms, v_min, v_max, **params)

	Bases: mushroom_rl.algorithms.value.dqn.abstract_dqn.AbstractDQN

Categorical DQN algorithm.
“A Distributional Perspective on Reinforcement Learning”.
Bellemare M. et al.. 2017.

	
__init__(mdp_info, policy, approximator_params, n_atoms, v_min, v_max, **params)

	Constructor.

	Parameters

	
	n_atoms (int) – number of atoms;

	v_min (float) – minimum value of value-function;

	v_max (float) – maximum value of value-function.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Maximum action-value for each state in next_state.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_update_target()

	Update the target network.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger, loss_filename='loss_Q')

	Setter that can be used to pass a logger to the algorithm

	Parameters

	
	logger (Logger) – the logger to be used by the algorithm;

	loss_filename (str, 'loss_Q') – optional string to specify the loss filename.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class NoisyDQN(mdp_info, policy, approximator_params, **params)

	Bases: mushroom_rl.algorithms.value.dqn.dqn.DQN

Noisy DQN algorithm.
“Noisy networks for exploration”.
Fortunato M. et al.. 2018.

	
__init__(mdp_info, policy, approximator_params, **params)

	Constructor.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Maximum action-value for each state in next_state.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_update_target()

	Update the target network.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger, loss_filename='loss_Q')

	Setter that can be used to pass a logger to the algorithm

	Parameters

	
	logger (Logger) – the logger to be used by the algorithm;

	loss_filename (str, 'loss_Q') – optional string to specify the loss filename.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

	
class Rainbow(mdp_info, policy, approximator_params, n_atoms, v_min, v_max, n_steps_return, alpha_coeff, beta, sigma_coeff=0.5, **params)

	Bases: mushroom_rl.algorithms.value.dqn.abstract_dqn.AbstractDQN

Rainbow algorithm.
“Rainbow: Combinining Improvements in Deep Reinforcement Learning”.
Hessel M. et al.. 2018.

	
__init__(mdp_info, policy, approximator_params, n_atoms, v_min, v_max, n_steps_return, alpha_coeff, beta, sigma_coeff=0.5, **params)

	Constructor.

	Parameters

	
	n_atoms (int) – number of atoms;

	v_min (float) – minimum value of value-function;

	v_max (float) – maximum value of value-function;

	n_steps_return (int) – the number of steps to consider to compute the n-return;

	alpha_coeff (float) – prioritization exponent for prioritized experience replay;

	beta (Parameter) – importance sampling coefficient for prioritized experience replay;

	sigma_coeff (float, 5) – sigma0 coefficient for noise initialization in noisy layers.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_next_q(next_state, absorbing)

	
	Parameters

	
	next_state (np.ndarray) – the states where next action has to be
evaluated;

	absorbing (np.ndarray) – the absorbing flag for the states in
next_state.

	Returns

	Maximum action-value for each state in next_state.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_update_target()

	Update the target network.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Return the action to execute in the given state. It is the action
returned by the policy or the action set by the algorithm (e.g. in the
case of SARSA).

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action to be executed.

	
episode_start()

	Called by the agent when a new episode starts.

	
fit(dataset)

	Fit step.

	Parameters

	dataset (list) – the dataset.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger, loss_filename='loss_Q')

	Setter that can be used to pass a logger to the algorithm

	Parameters

	
	logger (Logger) – the logger to be used by the algorithm;

	loss_filename (str, 'loss_Q') – optional string to specify the loss filename.

	
stop()

	Method used to stop an agent. Useful when dealing with real world
environments, simulators, or to cleanup environments internals after
a core learn/evaluate to enforce consistency.

Approximators

MushroomRL exposes the high-level class Regressor that can manage any type of
function regressor. This class is a wrapper for any kind of function
approximator, e.g. a scikit-learn approximator or a pytorch neural network.

Regressor

	
class Regressor(approximator, input_shape, output_shape=None, n_actions=None, n_models=None, **params)

	Bases: mushroom_rl.core.serialization.Serializable

This class implements the function to manage a function approximator. This
class selects the appropriate kind of regressor to implement according to
the parameters provided by the user; this makes this class the only one to
use for each kind of task that has to be performed.
The inference of the implementation to choose is done checking the provided
values of parameters n_actions.
If n_actions is provided, it means that the user wants to implement an
approximator of the Q-function: if the value of n_actions is equal to
the output_shape then a QRegressor is created, else
(output_shape should be (1,)) an ActionRegressor is created.
Otherwise a GenericRegressor is created.
An Ensemble model can be used for all the previous implementations
listed before simply providing a n_models parameter greater than 1.

	
__init__(approximator, input_shape, output_shape=None, n_actions=None, n_models=None, **params)

	Constructor.

	Parameters

	
	approximator (class) – the approximator class to use to create
the model;

	input_shape (tuple) – the shape of the input of the model;

	output_shape (tuple, None) – the shape of the output of the model;

	n_actions (int, None) – number of actions considered to create a
QRegressor or an ActionRegressor;

	n_models (int, 1) – number of models to create;

	**params – other parameters to create each model.

	
__call__(*z, **predict_params)

	Call self as a function.

	
fit(*z, **fit_params)

	Fit the model.

	Parameters

	
	*z – list of input of the model;

	**fit_params – parameters to use to fit the model.

	
predict(*z, **predict_params)

	Predict the output of the model given an input.

	Parameters

	
	*z – list of input of the model;

	**predict_params – parameters to use to predict with the model.

	Returns

	The model prediction.

	
model

	The model object.

	Type

	Returns

	
reset()

	Reset the model parameters.

	
input_shape

	The shape of the input of the model.

	Type

	Returns

	
output_shape

	The shape of the output of the model.

	Type

	Returns

	
weights_size

	The shape of the weights of the model.

	Type

	Returns

	
get_weights()

	
	Returns

	The weights of the model.

	
set_weights(w)

	
	Parameters

	w (list) – list of weights to be set in the model.

	
diff(*z)

	
	Parameters

	*z – the input of the model.

	Returns

	The derivative of the model.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_logger(logger, loss_filename=None)

	Setter that can be used to pass a logger to the regressor.

	Parameters

	
	logger (Logger) – the logger to be used by the regressor;

	loss_filename (str, None) – optional string to specify the loss filename.

Approximator

Linear

	
class LinearApproximator(weights=None, input_shape=None, output_shape=(1,), **kwargs)

	Bases: mushroom_rl.core.serialization.Serializable

This class implements a linear approximator.

	
__init__(weights=None, input_shape=None, output_shape=(1,), **kwargs)

	Constructor.

	Parameters

	
	weights (np.ndarray) – array of weights to initialize the weights
of the approximator;

	input_shape (np.ndarray, None) – the shape of the input of the
model;

	output_shape (np.ndarray, (1,)) – the shape of the output of the
model;

	**kwargs – other params of the approximator.

	
fit(x, y, **fit_params)

	Fit the model.

	Parameters

	
	x (np.ndarray) – input;

	y (np.ndarray) – target;

	**fit_params – other parameters used by the fit method of the
regressor.

	
predict(x, **predict_params)

	Predict.

	Parameters

	
	x (np.ndarray) – input;

	**predict_params – other parameters used by the predict method
the regressor.

	Returns

	The predictions of the model.

	
weights_size

	The size of the array of weights.

	Type

	Returns

	
get_weights()

	Getter.

	Returns

	The set of weights of the approximator.

	
set_weights(w)

	Setter.

	Parameters

	w (np.ndarray) – the set of weights to set.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
diff(state, action=None)

	Compute the derivative of the output w.r.t. state, and action
if provided.

	Parameters

	
	state (np.ndarray) – the state;

	action (np.ndarray, None) – the action.

	Returns

	The derivative of the output w.r.t. state, and action
if provided.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

Torch Approximator

	
class TorchApproximator(input_shape, output_shape, network, optimizer=None, loss=None, batch_size=0, n_fit_targets=1, use_cuda=False, reinitialize=False, dropout=False, quiet=True, **params)

	Bases: mushroom_rl.core.serialization.Serializable

Class to interface a pytorch model to the mushroom Regressor interface.
This class implements all is needed to use a generic pytorch model and train
it using a specified optimizer and objective function.
This class supports also minibatches.

	
__init__(input_shape, output_shape, network, optimizer=None, loss=None, batch_size=0, n_fit_targets=1, use_cuda=False, reinitialize=False, dropout=False, quiet=True, **params)

	Constructor.

	Parameters

	
	input_shape (tuple) – shape of the input of the network;

	output_shape (tuple) – shape of the output of the network;

	network (torch.nn.Module) – the network class to use;

	optimizer (dict) – the optimizer used for every fit step;

	loss (torch.nn.functional) – the loss function to optimize in the
fit method;

	batch_size (int, 0) – the size of each minibatch. If 0, the whole
dataset is fed to the optimizer at each epoch;

	n_fit_targets (int, 1) – the number of fit targets used by the fit
method of the network;

	use_cuda (bool, False) – if True, runs the network on the GPU;

	reinitialize (bool, False) – if True, the approximator is re

	at every fit call. To perform the initialization, the (initialized) –

	method must be defined properly for the selected (weights_init) –

	network. (model) –

	dropout (bool, False) – if True, dropout is applied only during
train;

	quiet (bool, True) – if False, shows two progress bars, one for
epochs and one for the minibatches;

	**params – dictionary of parameters needed to construct the
network.

	
predict(*args, output_tensor=False, **kwargs)

	Predict.

	Parameters

	
	*args – input;

	output_tensor (bool, False) – whether to return the output as tensor
or not;

	**kwargs – other parameters used by the predict method
the regressor.

	Returns

	The predictions of the model.

	
fit(*args, n_epochs=None, weights=None, epsilon=None, patience=1, validation_split=1.0, **kwargs)

	Fit the model.

	Parameters

	
	*args – input, where the last n_fit_targets elements
are considered as the target, while the others are considered
as input;

	n_epochs (int, None) – the number of training epochs;

	weights (np.ndarray, None) – the weights of each sample in the
computation of the loss;

	epsilon (float, None) – the coefficient used for early stopping;

	patience (float, 1.) – the number of epochs to wait until stop
the learning if not improving;

	validation_split (float, 1.) – the percentage of the dataset to use
as training set;

	**kwargs – other parameters used by the fit method of the
regressor.

	
set_weights(weights)

	Setter.

	Parameters

	w (np.ndarray) – the set of weights to set.

	
get_weights()

	Getter.

	Returns

	The set of weights of the approximator.

	
weights_size

	The size of the array of weights.

	Type

	Returns

	
diff(*args, **kwargs)

	Compute the derivative of the output w.r.t. state, and action
if provided.

	Parameters

	
	state (np.ndarray) – the state;

	action (np.ndarray, None) – the action.

	Returns

	The derivative of the output w.r.t. state, and action
if provided.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

Distributions

	
class Distribution

	Bases: mushroom_rl.core.serialization.Serializable

Interface for Distributions to represent a generic probability distribution.
Probability distributions are often used by black box optimization
algorithms in order to perform exploration in parameter space. In
literature, they are also known as high level policies.

	
sample()

	Draw a sample from the distribution.

	Returns

	A random vector sampled from the distribution.

	
log_pdf(theta)

	Compute the logarithm of the probability density function in the
specified point

	Parameters

	theta (np.ndarray) – the point where the log pdf is calculated

	Returns

	The value of the log pdf in the specified point.

	
__call__(theta)

	Compute the probability density function in the specified point

	Parameters

	theta (np.ndarray) – the point where the pdf is calculated

	Returns

	The value of the pdf in the specified point.

	
entropy()

	Compute the entropy of the distribution.

	Returns

	The value of the entropy of the distribution.

	
mle(theta, weights=None)

	Compute the (weighted) maximum likelihood estimate of the points,
and update the distribution accordingly.

	Parameters

	
	theta (np.ndarray) – a set of points, every row is a sample

	weights (np.ndarray, None) – a vector of weights. If specified
the weighted maximum likelihood
estimate is computed instead of the
plain maximum likelihood. The number of
elements of this vector must be equal
to the number of rows of the theta
matrix.

	
diff_log(theta)

	Compute the derivative of the logarithm of the probability density
function in the specified point.

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the log pdf is

	computed. –

	Returns

	The gradient of the log pdf in the specified point.

	
diff(theta)

	Compute the derivative of the probability density function, in the
specified point. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\rho}p(\theta)=p(\theta)\nabla_{\rho}\log p(\theta)\]

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the pdf is

	calculated. –

	Returns

	The gradient of the pdf in the specified point.

	
get_parameters()

	Getter.

	Returns

	The current distribution parameters.

	
set_parameters(rho)

	Setter.

	Parameters

	rho (np.ndarray) – the vector of the new parameters to be used by
the distribution

	
parameters_size

	Property.

	Returns

	The size of the distribution parameters.

	
__init__

	Initialize self. See help(type(self)) for accurate signature.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

Gaussian

	
class GaussianDistribution(mu, sigma)

	Bases: mushroom_rl.distributions.distribution.Distribution

Gaussian distribution with fixed covariance matrix. The parameters
vector represents only the mean.

	
__init__(mu, sigma)

	Constructor.

	Parameters

	
	mu (np.ndarray) – initial mean of the distribution;

	sigma (np.ndarray) – covariance matrix of the distribution.

	
sample()

	Draw a sample from the distribution.

	Returns

	A random vector sampled from the distribution.

	
log_pdf(theta)

	Compute the logarithm of the probability density function in the
specified point

	Parameters

	theta (np.ndarray) – the point where the log pdf is calculated

	Returns

	The value of the log pdf in the specified point.

	
__call__(theta)

	Compute the probability density function in the specified point

	Parameters

	theta (np.ndarray) – the point where the pdf is calculated

	Returns

	The value of the pdf in the specified point.

	
entropy()

	Compute the entropy of the distribution.

	Returns

	The value of the entropy of the distribution.

	
mle(theta, weights=None)

	Compute the (weighted) maximum likelihood estimate of the points,
and update the distribution accordingly.

	Parameters

	
	theta (np.ndarray) – a set of points, every row is a sample

	weights (np.ndarray, None) – a vector of weights. If specified
the weighted maximum likelihood
estimate is computed instead of the
plain maximum likelihood. The number of
elements of this vector must be equal
to the number of rows of the theta
matrix.

	
diff_log(theta)

	Compute the derivative of the logarithm of the probability density
function in the specified point.

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the log pdf is

	computed. –

	Returns

	The gradient of the log pdf in the specified point.

	
get_parameters()

	Getter.

	Returns

	The current distribution parameters.

	
set_parameters(rho)

	Setter.

	Parameters

	rho (np.ndarray) – the vector of the new parameters to be used by
the distribution

	
parameters_size

	Property.

	Returns

	The size of the distribution parameters.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
diff(theta)

	Compute the derivative of the probability density function, in the
specified point. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\rho}p(\theta)=p(\theta)\nabla_{\rho}\log p(\theta)\]

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the pdf is

	calculated. –

	Returns

	The gradient of the pdf in the specified point.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
class GaussianDiagonalDistribution(mu, std)

	Bases: mushroom_rl.distributions.distribution.Distribution

Gaussian distribution with diagonal covariance matrix. The parameters
vector represents the mean and the standard deviation for each dimension.

	
__init__(mu, std)

	Constructor.

	Parameters

	
	mu (np.ndarray) – initial mean of the distribution;

	std (np.ndarray) – initial vector of standard deviations for each
variable of the distribution.

	
sample()

	Draw a sample from the distribution.

	Returns

	A random vector sampled from the distribution.

	
log_pdf(theta)

	Compute the logarithm of the probability density function in the
specified point

	Parameters

	theta (np.ndarray) – the point where the log pdf is calculated

	Returns

	The value of the log pdf in the specified point.

	
__call__(theta)

	Compute the probability density function in the specified point

	Parameters

	theta (np.ndarray) – the point where the pdf is calculated

	Returns

	The value of the pdf in the specified point.

	
entropy()

	Compute the entropy of the distribution.

	Returns

	The value of the entropy of the distribution.

	
mle(theta, weights=None)

	Compute the (weighted) maximum likelihood estimate of the points,
and update the distribution accordingly.

	Parameters

	
	theta (np.ndarray) – a set of points, every row is a sample

	weights (np.ndarray, None) – a vector of weights. If specified
the weighted maximum likelihood
estimate is computed instead of the
plain maximum likelihood. The number of
elements of this vector must be equal
to the number of rows of the theta
matrix.

	
diff_log(theta)

	Compute the derivative of the logarithm of the probability density
function in the specified point.

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the log pdf is

	computed. –

	Returns

	The gradient of the log pdf in the specified point.

	
get_parameters()

	Getter.

	Returns

	The current distribution parameters.

	
set_parameters(rho)

	Setter.

	Parameters

	rho (np.ndarray) – the vector of the new parameters to be used by
the distribution

	
parameters_size

	Property.

	Returns

	The size of the distribution parameters.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
diff(theta)

	Compute the derivative of the probability density function, in the
specified point. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\rho}p(\theta)=p(\theta)\nabla_{\rho}\log p(\theta)\]

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the pdf is

	calculated. –

	Returns

	The gradient of the pdf in the specified point.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
class GaussianCholeskyDistribution(mu, sigma)

	Bases: mushroom_rl.distributions.distribution.Distribution

Gaussian distribution with full covariance matrix. The parameters
vector represents the mean and the Cholesky decomposition of the
covariance matrix. This parametrization enforce the covariance matrix to be
positive definite.

	
__init__(mu, sigma)

	Constructor.

	Parameters

	
	mu (np.ndarray) – initial mean of the distribution;

	sigma (np.ndarray) – initial covariance matrix of the distribution.

	
sample()

	Draw a sample from the distribution.

	Returns

	A random vector sampled from the distribution.

	
log_pdf(theta)

	Compute the logarithm of the probability density function in the
specified point

	Parameters

	theta (np.ndarray) – the point where the log pdf is calculated

	Returns

	The value of the log pdf in the specified point.

	
__call__(theta)

	Compute the probability density function in the specified point

	Parameters

	theta (np.ndarray) – the point where the pdf is calculated

	Returns

	The value of the pdf in the specified point.

	
entropy()

	Compute the entropy of the distribution.

	Returns

	The value of the entropy of the distribution.

	
mle(theta, weights=None)

	Compute the (weighted) maximum likelihood estimate of the points,
and update the distribution accordingly.

	Parameters

	
	theta (np.ndarray) – a set of points, every row is a sample

	weights (np.ndarray, None) – a vector of weights. If specified
the weighted maximum likelihood
estimate is computed instead of the
plain maximum likelihood. The number of
elements of this vector must be equal
to the number of rows of the theta
matrix.

	
diff_log(theta)

	Compute the derivative of the logarithm of the probability density
function in the specified point.

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the log pdf is

	computed. –

	Returns

	The gradient of the log pdf in the specified point.

	
get_parameters()

	Getter.

	Returns

	The current distribution parameters.

	
set_parameters(rho)

	Setter.

	Parameters

	rho (np.ndarray) – the vector of the new parameters to be used by
the distribution

	
parameters_size

	Property.

	Returns

	The size of the distribution parameters.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
diff(theta)

	Compute the derivative of the probability density function, in the
specified point. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\rho}p(\theta)=p(\theta)\nabla_{\rho}\log p(\theta)\]

	Parameters

	
	theta (np.ndarray) – the point where the gradient of the pdf is

	calculated. –

	Returns

	The gradient of the pdf in the specified point.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

Environments

In mushroom_rl we distinguish between two different types of environment classes:

	proper environments

	generators

While environments directly implement the Environment interface, generators
are a set of methods used to generate finite markov chains that represent a
specific environment e.g., grid worlds.

Environments

Atari

	
class MaxAndSkip(env, skip, max_pooling=True)

	Bases: gym.core.Wrapper

	
__init__(env, skip, max_pooling=True)

	Initialize self. See help(type(self)) for accurate signature.

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object) – an action provided by the agent

	Returns

	agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (bool): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, logging, and sometimes learning)

	Return type

	observation (object)

	
reset(**kwargs)

	Resets the environment to an initial state and returns an initial
observation.

This method should also reset the environment’s random number
generator(s) if seed is an integer or if the environment has not
yet initialized a random number generator. If the environment already
has a random number generator and reset is called with seed=None,
the RNG should not be reset.
Moreover, reset should (in the typical use case) be called with an
integer seed right after initialization and then never again.

	Returns

	the initial observation.
info (optional dictionary): a dictionary containing extra information, this is only returned if return_info is set to true

	Return type

	observation (object)

	
close()

	Override close in your subclass to perform any necessary cleanup.

Environments will automatically close() themselves when
garbage collected or when the program exits.

	
metadata

	dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object’s

(key, value) pairs

	dict(iterable) -> new dictionary initialized as if via:

	d = {}
for k, v in iterable:

d[k] = v

	dict(**kwargs) -> new dictionary initialized with the name=value pairs

	in the keyword argument list. For example: dict(one=1, two=2)

	
np_random

	Initializes the np_random field if not done already.

	
render(mode='human', **kwargs)

	Renders the environment.

The set of supported modes varies per environment. (And some
third-party environments may not support rendering at all.)
By convention, if mode is:

	human: render to the current display or terminal and
return nothing. Usually for human consumption.

	rgb_array: Return an numpy.ndarray with shape (x, y, 3),
representing RGB values for an x-by-y pixel image, suitable
for turning into a video.

	ansi: Return a string (str) or StringIO.StringIO containing a
terminal-style text representation. The text can include newlines
and ANSI escape sequences (e.g. for colors).

Note

	Make sure that your class’s metadata ‘render_modes’ key includes

	the list of supported modes. It’s recommended to call super()
in implementations to use the functionality of this method.

	Parameters

	mode (str) – the mode to render with

Example:

	class MyEnv(Env):

	metadata = {‘render_modes’: [‘human’, ‘rgb_array’]}

	def render(self, mode=’human’):

	
	if mode == ‘rgb_array’:

	return np.array(…) # return RGB frame suitable for video

	elif mode == ‘human’:

	… # pop up a window and render

	else:

	super(MyEnv, self).render(mode=mode) # just raise an exception

	
reward_range

	Built-in immutable sequence.

If no argument is given, the constructor returns an empty tuple.
If iterable is specified the tuple is initialized from iterable’s items.

If the argument is a tuple, the return value is the same object.

	
seed(seed=None)

	Sets the seed for this env’s random number generator(s).

Note

Some environments use multiple pseudorandom number generators.
We want to capture all such seeds used in order to ensure that
there aren’t accidental correlations between multiple generators.

	Returns

	
	Returns the list of seeds used in this env’s random

	number generators. The first value in the list should be the
“main” seed, or the value which a reproducer should pass to
‘seed’. Often, the main seed equals the provided ‘seed’, but
this won’t be true if seed=None, for example.

	Return type

	list<bigint>

	
unwrapped

	Completely unwrap this env.

	Returns

	The base non-wrapped gym.Env instance

	Return type

	gym.Env

	
class Atari(name, width=84, height=84, ends_at_life=False, max_pooling=True, history_length=4, max_no_op_actions=30)

	Bases: mushroom_rl.core.environment.Environment

The Atari environment as presented in:
“Human-level control through deep reinforcement learning”. Mnih et. al..
2015.

	
__init__(name, width=84, height=84, ends_at_life=False, max_pooling=True, history_length=4, max_no_op_actions=30)

	Constructor.

	Parameters

	
	name (str) – id name of the Atari game in Gym;

	width (int, 84) – width of the screen;

	height (int, 84) – height of the screen;

	ends_at_life (bool, False) – whether the episode ends when a life is
lost or not;

	max_pooling (bool, True) – whether to do max-pooling or
average-pooling of the last two frames when using NoFrameskip;

	history_length (int, 4) – number of frames to form a state;

	max_no_op_actions (int, 30) – maximum number of no-op action to
execute at the beginning of an episode.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
classmethod register()

	Register an environment in the environment list.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
set_episode_end(ends_at_life)

	Setter.

	Parameters

	ends_at_life (bool) – whether the episode ends when a life is
lost or not.

Car on hill

	
class CarOnHill(horizon=100, gamma=0.95)

	Bases: mushroom_rl.core.environment.Environment

The Car On Hill environment as presented in:
“Tree-Based Batch Mode Reinforcement Learning”. Ernst D. et al.. 2005.

	
__init__(horizon=100, gamma=0.95)

	Constructor.

	Parameters

	
	horizon (int, 100) – horizon of the problem;

	gamma (float, 95) – discount factor.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
classmethod register()

	Register an environment in the environment list.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

DeepMind Control Suite

	
class DMControl(domain_name, task_name, horizon=None, gamma=0.99, task_kwargs=None, dt=0.01, width_screen=480, height_screen=480, camera_id=0)

	Bases: mushroom_rl.core.environment.Environment

Interface for dm_control suite Mujoco environments. It makes it possible to
use every dm_control suite Mujoco environment just providing the necessary
information.

	
__init__(domain_name, task_name, horizon=None, gamma=0.99, task_kwargs=None, dt=0.01, width_screen=480, height_screen=480, camera_id=0)

	Constructor.

	Parameters

	
	domain_name (str) – name of the environment;

	task_name (str) – name of the task of the environment;

	horizon (int) – the horizon;

	gamma (float) – the discount factor;

	task_kwargs (dict, None) – parameters of the task;

	dt (float, 01) – duration of a control step;

	width_screen (int, 480) – width of the screen;

	height_screen (int, 480) – height of the screen;

	camera_id (int, 0) – position of camera to render the environment;

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
classmethod register()

	Register an environment in the environment list.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

Finite MDP

	
class FiniteMDP(p, rew, mu=None, gamma=0.9, horizon=inf)

	Bases: mushroom_rl.core.environment.Environment

Finite Markov Decision Process.

	
__init__(p, rew, mu=None, gamma=0.9, horizon=inf)

	Constructor.

	Parameters

	
	p (np.ndarray) – transition probability matrix;

	rew (np.ndarray) – reward matrix;

	mu (np.ndarray, None) – initial state probability distribution;

	gamma (float, 9) – discount factor;

	horizon (int, np.inf) – the horizon.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
classmethod register()

	Register an environment in the environment list.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

Grid World

	
class AbstractGridWorld(mdp_info, height, width, start, goal)

	Bases: mushroom_rl.core.environment.Environment

Abstract class to build a grid world.

	
__init__(mdp_info, height, width, start, goal)

	Constructor.

	Parameters

	
	height (int) – height of the grid;

	width (int) – width of the grid;

	start (tuple) – x-y coordinates of the goal;

	goal (tuple) – x-y coordinates of the goal.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
classmethod register()

	Register an environment in the environment list.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
class GridWorld(height, width, goal, start=(0, 0))

	Bases: mushroom_rl.environments.grid_world.AbstractGridWorld

Standard grid world.

	
__init__(height, width, goal, start=(0, 0))

	Constructor.

	Parameters

	
	height (int) – height of the grid;

	width (int) – width of the grid;

	start (tuple) – x-y coordinates of the goal;

	goal (tuple) – x-y coordinates of the goal.

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
classmethod register()

	Register an environment in the environment list.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
class GridWorldVanHasselt(height=3, width=3, goal=(0, 2), start=(2, 0))

	Bases: mushroom_rl.environments.grid_world.AbstractGridWorld

A variant of the grid world as presented in:
“Double Q-Learning”. Hasselt H. V.. 2010.

	
__init__(height=3, width=3, goal=(0, 2), start=(2, 0))

	Constructor.

	Parameters

	
	height (int) – height of the grid;

	width (int) – width of the grid;

	start (tuple) – x-y coordinates of the goal;

	goal (tuple) – x-y coordinates of the goal.

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
classmethod register()

	Register an environment in the environment list.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

Gym

	
class Gym(name, horizon=None, gamma=0.99, wrappers=None, wrappers_args=None, **env_args)

	Bases: mushroom_rl.core.environment.Environment

Interface for OpenAI Gym environments. It makes it possible to use every
Gym environment just providing the id, except for the Atari games that
are managed in a separate class.

	
__init__(name, horizon=None, gamma=0.99, wrappers=None, wrappers_args=None, **env_args)

	Constructor.

	Parameters

	
	name (str) – gym id of the environment;

	horizon (int) – the horizon. If None, use the one from Gym;

	gamma (float, 0.99) – the discount factor;

	wrappers – list of wrappers to apply over the environment. It
is possible to pass arguments to the wrappers by providing
a tuple with two elements: the gym wrapper class and a
dictionary containing the parameters needed by the wrapper
constructor;

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
classmethod register()

	Register an environment in the environment list.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

Inverted pendulum

	
class InvertedPendulum(random_start=False, m=1.0, l=1.0, g=9.8, mu=0.01, max_u=5.0, horizon=5000, gamma=0.99)

	Bases: mushroom_rl.core.environment.Environment

The Inverted Pendulum environment (continuous version) as presented in:
“Reinforcement Learning In Continuous Time and Space”. Doya K.. 2000.
“Off-Policy Actor-Critic”. Degris T. et al.. 2012.
“Deterministic Policy Gradient Algorithms”. Silver D. et al. 2014.

	
__init__(random_start=False, m=1.0, l=1.0, g=9.8, mu=0.01, max_u=5.0, horizon=5000, gamma=0.99)

	Constructor.

	Parameters

	
	random_start (bool, False) – whether to start from a random position
or from the horizontal one;

	m (float, 1.0) – mass of the pendulum;

	l (float, 1.0) – length of the pendulum;

	g (float, 9.8) – gravity acceleration constant;

	mu (float, 1e-2) – friction constant of the pendulum;

	max_u (float, 5.0) – maximum allowed input torque;

	horizon (int, 5000) – horizon of the problem;

	gamma (int, 99) – discount factor.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
classmethod register()

	Register an environment in the environment list.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

Cart Pole

	
class CartPole(m=2.0, M=8.0, l=0.5, g=9.8, mu=0.01, max_u=50.0, noise_u=10.0, horizon=3000, gamma=0.95)

	Bases: mushroom_rl.core.environment.Environment

The Inverted Pendulum on a Cart environment as presented in:
“Least-Squares Policy Iteration”. Lagoudakis M. G. and Parr R.. 2003.

	
__init__(m=2.0, M=8.0, l=0.5, g=9.8, mu=0.01, max_u=50.0, noise_u=10.0, horizon=3000, gamma=0.95)

	Constructor.

	Parameters

	
	m (float, 2.0) – mass of the pendulum;

	M (float, 8.0) – mass of the cart;

	l (float, 5) – length of the pendulum;

	g (float, 9.8) – gravity acceleration constant;

	max_u (float, 50.) – maximum allowed input torque;

	noise_u (float, 10.) – maximum noise on the action;

	horizon (int, 3000) – horizon of the problem;

	gamma (float, 95) – discount factor.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
classmethod register()

	Register an environment in the environment list.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

LQR

	
class LQR(A, B, Q, R, max_pos=inf, max_action=inf, random_init=False, episodic=False, gamma=0.9, horizon=50, initial_state=None)

	Bases: mushroom_rl.core.environment.Environment

This class implements a Linear-Quadratic Regulator.
This task aims to minimize the undesired deviations from nominal values of
some controller settings in control problems.
The system equations in this task are:

\[x_{t+1} = Ax_t + Bu_t\]

where x is the state and u is the control signal.

The reward function is given by:

\[r_t = -\left(x_t^TQx_t + u_t^TRu_t \right)\]

“Policy gradient approaches for multi-objective sequential decision making”.
Parisi S., Pirotta M., Smacchia N., Bascetta L., Restelli M.. 2014

	
__init__(A, B, Q, R, max_pos=inf, max_action=inf, random_init=False, episodic=False, gamma=0.9, horizon=50, initial_state=None)

	Constructor.

	Args:

	A (np.ndarray): the state dynamics matrix;
B (np.ndarray): the action dynamics matrix;
Q (np.ndarray): reward weight matrix for state;
R (np.ndarray): reward weight matrix for action;
max_pos (float, np.inf): maximum value of the state;
max_action (float, np.inf): maximum value of the action;
random_init (bool, False): start from a random state;
episodic (bool, False): end the episode when the state goes over
the threshold;
gamma (float, 0.9): discount factor;
horizon (int, 50): horizon of the mdp.

	
static generate(dimensions=None, s_dim=None, a_dim=None, max_pos=inf, max_action=inf, eps=0.1, index=0, scale=1.0, random_init=False, episodic=False, gamma=0.9, horizon=50, initial_state=None)

	Factory method that generates an lqr with identity dynamics and
symmetric reward matrices.

	Parameters

	
	dimensions (int) – number of state-action dimensions;

	s_dim (int) – number of state dimensions;

	a_dim (int) – number of action dimensions;

	max_pos (float, np.inf) – maximum value of the state;

	max_action (float, np.inf) – maximum value of the action;

	eps (double, 1) – reward matrix weights specifier;

	index (int, 0) – selector for the principal state;

	scale (float, 1.0) – scaling factor for the reward function;

	random_init (bool, False) – start from a random state;

	episodic (bool, False) – end the episode when the state goes over the
threshold;

	gamma (float, 9) – discount factor;

	horizon (int, 50) – horizon of the mdp.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
classmethod register()

	Register an environment in the environment list.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

Mujoco

	
class ObservationType

	Bases: enum.Enum

An enum indicating the type of data that should be added to the observation
of the environment, can be Joint-/Body-/Site- positions and velocities.

	
class MuJoCo(file_name, actuation_spec, observation_spec, gamma, horizon, n_substeps=1, n_intermediate_steps=1, additional_data_spec=None, collision_groups=None)

	Bases: mushroom_rl.core.environment.Environment

Class to create a Mushroom environment using the MuJoCo simulator.

	
__init__(file_name, actuation_spec, observation_spec, gamma, horizon, n_substeps=1, n_intermediate_steps=1, additional_data_spec=None, collision_groups=None)

	Constructor.

	Parameters

	
	file_name (string) – The path to the XML file with which the
environment should be created;

	actuation_spec (list) – A list specifying the names of the joints
which should be controllable by the agent. Can be left empty
when all actuators should be used;

	observation_spec (list) – A list containing the names of data that
should be made available to the agent as an observation and
their type (ObservationType). An entry in the list is given by:
(name, type);

	gamma (float) – The discounting factor of the environment;

	horizon (int) – The maximum horizon for the environment;

	n_substeps (int) – The number of substeps to use by the MuJoCo
simulator. An action given by the agent will be applied for
n_substeps before the agent receives the next observation and
can act accordingly;

	n_intermediate_steps (int) – The number of steps between every action
taken by the agent. Similar to n_substeps but allows the user
to modify, control and access intermediate states.

	additional_data_spec (list) – A list containing the data fields of
interest, which should be read from or written to during
simulation. The entries are given as the following tuples:
(key, name, type) key is a string for later referencing in the
“read_data” and “write_data” methods. The name is the name of
the object in the XML specification and the type is the
ObservationType;

	collision_groups (list) – A list containing groups of geoms for
which collisions should be checked during simulation via
check_collision. The entries are given as:
(key, geom_names), where key is a string for later
referencing in the “check_collision” method, and geom_names is
a list of geom names in the XML specification.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
_preprocess_action(action)

	Compute a transformation of the action provided to the
environment.

	Parameters

	action (np.ndarray) – numpy array with the actions
provided to the environment.

	Returns

	The action to be used for the current step

	
_step_init(state, action)

	Allows information to be initialized at the start of a step.

	
_compute_action(action)

	Compute a transformation of the action at every intermediate step.
Useful to add control signals simulated directly in python.

	Parameters

	action (np.ndarray) – numpy array with the actions
provided at every step.

	Returns

	The action to be set in the actual mujoco simulation.

	
_simulation_pre_step()

	
	Allows information to be accesed and changed at every intermediate step

	before taking a step in the mujoco simulation.
Can be usefull to apply an external force/torque to the specified bodies.

	ex: apply a force over X to the torso:

	force = [200, 0, 0]
torque = [0, 0, 0]
self.sim.data.xfrc_applied[self.sim.model._body_name2id[“torso”],:] = force + torque

	
_simulation_post_step()

	
	Allows information to be accesed at every intermediate step

	after taking a step in the mujoco simulation.
Can be usefull to average forces over all intermediate steps.

	
_step_finalize()

	Allows information to be accesed at the end of a step.

	
_read_data(name)

	Read data form the MuJoCo data structure.

	Parameters

	name (string) – A name referring to an entry contained the
additional_data_spec list handed to the constructor.

	Returns

	The desired data as a one-dimensional numpy array.

	
_write_data(name, value)

	Write data to the MuJoCo data structure.

	Parameters

	
	name (string) – A name referring to an entry contained in the
additional_data_spec list handed to the constructor;

	value (ndarray) – The data that should be written.

	
_check_collision(group1, group2)

	Check for collision between the specified groups.

	Parameters

	
	group1 (string) – A name referring to an entry contained in the
collision_groups list handed to the constructor;

	group2 (string) – A name referring to an entry contained in the
collision_groups list handed to the constructor.

	Returns

	A flag indicating whether a collision occurred between the given
groups or not.

	
_get_collision_force(group1, group2)

	Returns the collision force and torques between the specified groups.

	Parameters

	
	group1 (string) – A name referring to an entry contained in the
collision_groups list handed to the constructor;

	group2 (string) – A name referring to an entry contained in the
collision_groups list handed to the constructor.

	Returns

	A 6D vector specifying the collision forces/torques[3D force + 3D torque]
between the given groups. Vector of 0’s in case there was no collision.
http://mujoco.org/book/programming.html#siContact

	
_reward(state, action, next_state)

	Compute the reward based on the given transition.

	Parameters

	
	state (np.array) – the current state of the system;

	action (np.array) – the action that is applied in the current state;

	next_state (np.array) – the state reached after applying the given
action.

	Returns

	The reward as a floating point scalar value.

	
_is_absorbing(state)

	Check whether the given state is an absorbing state or not.

	Parameters

	state (np.array) – the state of the system.

	Returns

	A boolean flag indicating whether this state is absorbing or not.

	
_setup()

	A function that allows to execute setup code after an environment
reset.

	
_load_simulation(file_name, n_substeps)

	Load mujoco model. Can be overridden to provide custom load functions.

	Parameters

	file_name – The path to the XML file with which the
environment should be created;

	Returns

	The loaded mujoco model.

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
classmethod register()

	Register an environment in the environment list.

Puddle World

	
class PuddleWorld(start=None, goal=None, goal_threshold=0.1, noise_step=0.025, noise_reward=0, reward_goal=0.0, thrust=0.05, puddle_center=None, puddle_width=None, gamma=0.99, horizon=5000)

	Bases: mushroom_rl.core.environment.Environment

Puddle world as presented in:
“Off-Policy Actor-Critic”. Degris T. et al.. 2012.

	
__init__(start=None, goal=None, goal_threshold=0.1, noise_step=0.025, noise_reward=0, reward_goal=0.0, thrust=0.05, puddle_center=None, puddle_width=None, gamma=0.99, horizon=5000)

	Constructor.

	Parameters

	
	start (np.array, None) – starting position of the agent;

	goal (np.array, None) – goal position;

	goal_threshold (float, 1) – distance threshold of the agent from the
goal to consider it reached;

	noise_step (float, 025) – noise in actions;

	noise_reward (float, 0) – standard deviation of gaussian noise in reward;

	reward_goal (float, 0) – reward obtained reaching goal state;

	thrust (float, 05) – distance walked during each action;

	puddle_center (np.array, None) – center of the puddle;

	puddle_width (np.array, None) – width of the puddle;

	gamma (float, 99) – discount factor.

	horizon (int, 5000) – horizon of the problem;

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
classmethod register()

	Register an environment in the environment list.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

Segway

	
class Segway(random_start=False)

	Bases: mushroom_rl.core.environment.Environment

The Segway environment (continuous version) as presented in:
“Deep Learning for Actor-Critic Reinforcement Learning”. Xueli Jia. 2015.

	
__init__(random_start=False)

	Constructor.

	Parameters

	random_start (bool, False) – whether to start from a random position
or from the horizontal one.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
classmethod register()

	Register an environment in the environment list.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

Ship steering

	
class ShipSteering(small=True, n_steps_action=3)

	Bases: mushroom_rl.core.environment.Environment

The Ship Steering environment as presented in:
“Hierarchical Policy Gradient Algorithms”. Ghavamzadeh M. and Mahadevan S..
2013.

	
__init__(small=True, n_steps_action=3)

	Constructor.

	Parameters

	
	small (bool, True) – whether to use a small state space or not.

	n_steps_action (int, 3) – number of integration intervals for each
step of the mdp.

	
reset(state=None)

	Reset the current state.

	Parameters

	state (np.ndarray, None) – the state to set to the current state.

	Returns

	The current state.

	
step(action)

	Move the agent from its current state according to the action.

	Parameters

	action (np.ndarray) – the action to execute.

	Returns

	The state reached by the agent executing action in its current
state, the reward obtained in the transition and a flag to signal
if the next state is absorbing. Also an additional dictionary is
returned (possibly empty).

	
stop()

	Method used to stop an mdp. Useful when dealing with real world
environments, simulators, or when using openai-gym rendering

	
static _bound(x, min_value, max_value)

	Method used to bound state and action variables.

	Parameters

	
	x – the variable to bound;

	min_value – the minimum value;

	max_value – the maximum value;

	Returns

	The bounded variable.

	
info

	An object containing the info of the environment.

	Type

	Returns

	
static list_registered()

	List registered environments.

	Returns

	The list of the registered environments.

	
static make(env_name, *args, **kwargs)

	Generate an environment given an environment name and parameters.
The environment is created using the generate method, if available. Otherwise, the constructor is used.
The generate method has a simpler interface than the constructor, making it easier to generate
a standard version of the environment. If the environment name contains a ‘.’ separator, the string
is splitted, the first element is used to select the environment and the other elements are passed as
positional parameters.

	Parameters

	
	env_name (str) – Name of the environment,

	*args – positional arguments to be provided to the environment generator;

	**kwargs – keyword arguments to be provided to the environment generator.

	Returns

	An instance of the constructed environment.

	
classmethod register()

	Register an environment in the environment list.

	
seed(seed)

	Set the seed of the environment.

	Parameters

	seed (float) – the value of the seed.

Generators

Grid world

	
generate_grid_world(grid, prob, pos_rew, neg_rew, gamma=0.9, horizon=100)

	This Grid World generator requires a .txt file to specify the
shape of the grid world and the cells. There are five types of cells: ‘S’ is
the starting position where the agent is; ‘G’ is the goal state; ‘.’ is a
normal cell; ‘*’ is a hole, when the agent steps on a hole, it receives a
negative reward and the episode ends; ‘#’ is a wall, when the agent is
supposed to step on a wall, it actually remains in its current state. The
initial states distribution is uniform among all the initial states
provided.

The grid is expected to be rectangular.

	Parameters

	
	grid (str) – the path of the file containing the grid structure;

	prob (float) – probability of success of an action;

	pos_rew (float) – reward obtained in goal states;

	neg_rew (float) – reward obtained in “hole” states;

	gamma (float, 9) – discount factor;

	horizon (int, 100) – the horizon.

	Returns

	A FiniteMDP object built with the provided parameters.

	
parse_grid(grid)

	Parse the grid file:

	Parameters

	grid (str) – the path of the file containing the grid structure;

	Returns

	A list containing the grid structure.

	
compute_probabilities(grid_map, cell_list, prob)

	Compute the transition probability matrix.

	Parameters

	
	grid_map (list) – list containing the grid structure;

	cell_list (list) – list of non-wall cells;

	prob (float) – probability of success of an action.

	Returns

	The transition probability matrix;

	
compute_reward(grid_map, cell_list, pos_rew, neg_rew)

	Compute the reward matrix.

	Parameters

	
	grid_map (list) – list containing the grid structure;

	cell_list (list) – list of non-wall cells;

	pos_rew (float) – reward obtained in goal states;

	neg_rew (float) – reward obtained in “hole” states;

	Returns

	The reward matrix.

	
compute_mu(grid_map, cell_list)

	Compute the initial states distribution.

	Parameters

	
	grid_map (list) – list containing the grid structure;

	cell_list (list) – list of non-wall cells.

	Returns

	The initial states distribution.

Simple chain

	
generate_simple_chain(state_n, goal_states, prob, rew, mu=None, gamma=0.9, horizon=100)

	Simple chain generator.

	Parameters

	
	state_n (int) – number of states;

	goal_states (list) – list of goal states;

	prob (float) – probability of success of an action;

	rew (float) – reward obtained in goal states;

	mu (np.ndarray) – initial state probability distribution;

	gamma (float, 9) – discount factor;

	horizon (int, 100) – the horizon.

	Returns

	A FiniteMDP object built with the provided parameters.

	
compute_probabilities(state_n, prob)

	Compute the transition probability matrix.

	Parameters

	
	state_n (int) – number of states;

	prob (float) – probability of success of an action.

	Returns

	The transition probability matrix;

	
compute_reward(state_n, goal_states, rew)

	Compute the reward matrix.

	Parameters

	
	state_n (int) – number of states;

	goal_states (list) – list of goal states;

	rew (float) – reward obtained in goal states.

	Returns

	The reward matrix.

Taxi

	
generate_taxi(grid, prob=0.9, rew=(0, 1, 3, 15), gamma=0.99, horizon=inf)

	This Taxi generator requires a .txt file to specify the shape of the grid
world and the cells. There are five types of cells: ‘S’ is the starting
where the agent is; ‘G’ is the goal state; ‘.’ is a normal cell; ‘F’ is a
passenger, when the agent steps on a hole, it picks up it.
‘#’ is a wall, when the agent is supposed to step on a wall, it actually
remains in its current state. The initial states distribution is uniform
among all the initial states provided. The episode terminates when the agent
reaches the goal state. The reward is always 0, except for the goal state
where it depends on the number of collected passengers. Each action has
a certain probability of success and, if it fails, the agent goes in a
perpendicular direction from the supposed one.

The grid is expected to be rectangular.

This problem is inspired from:
“Bayesian Q-Learning”. Dearden R. et al.. 1998.

	Parameters

	
	grid (str) – the path of the file containing the grid structure;

	prob (float, 9) – probability of success of an action;

	rew (tuple, (0, 1, 3, 15)) – rewards obtained in goal states;

	gamma (float, 99) – discount factor;

	horizon (int, np.inf) – the horizon.

	Returns

	A FiniteMDP object built with the provided parameters.

	
parse_grid(grid)

	Parse the grid file:

	Parameters

	grid (str) – the path of the file containing the grid structure.

	Returns

	A list containing the grid structure.

	
compute_probabilities(grid_map, cell_list, passenger_list, prob)

	Compute the transition probability matrix.

	Parameters

	
	grid_map (list) – list containing the grid structure;

	cell_list (list) – list of non-wall cells;

	passenger_list (list) – list of passenger cells;

	prob (float) – probability of success of an action.

	Returns

	The transition probability matrix;

	
compute_reward(grid_map, cell_list, passenger_list, rew)

	Compute the reward matrix.

	Parameters

	
	grid_map (list) – list containing the grid structure;

	cell_list (list) – list of non-wall cells;

	passenger_list (list) – list of passenger cells;

	rew (tuple) – rewards obtained in goal states.

	Returns

	The reward matrix.

	
compute_mu(grid_map, cell_list, passenger_list)

	Compute the initial states distribution.

	Parameters

	
	grid_map (list) – list containing the grid structure;

	cell_list (list) – list of non-wall cells;

	passenger_list (list) – list of passenger cells.

	Returns

	The initial states distribution.

Features

The features in MushroomRL are 1-D arrays computed applying a specified function
to a raw input, e.g. polynomial features of the state of an MDP.
MushroomRL supports three types of features:

	basis functions;

	tensor basis functions;

	tiles.

The tensor basis functions are a PyTorch implementation of the standard
basis functions. They are less straightforward than the standard ones, but they
are faster to compute as they can exploit parallel computing, e.g. GPU-acceleration
and multi-core systems.

All the types of features are exposed by a single factory method Features
that builds the one requested by the user.

	
Features(basis_list=None, tilings=None, tensor_list=None, n_outputs=None, function=None)

	Factory method to build the requested type of features. The types are
mutually exclusive.

Possible features are tilings (tilings), basis functions
(basis_list), tensor basis (tensor_list), and functional mappings
(n_outputs and function).

The difference between basis_list and tensor_list is that the
former is a list of python classes each one evaluating a single element of
the feature vector, while the latter consists in a list of PyTorch modules
that can be used to build a PyTorch network. The use of tensor_list is
a faster way to compute features than basis_list and is suggested when
the computation of the requested features is slow (see the Gaussian radial
basis function implementation as an example). A functional mapping applies
a function to the input computing an n_outputs-dimensional vector,
where the mapping is expressed by function. If function is not
provided, the identity is used.

	Parameters

	
	basis_list (list, None) – list of basis functions;

	tilings ([object, list], None) – single object or list of tilings;

	tensor_list (list, None) – list of dictionaries containing the
instructions to build the requested tensors;

	n_outputs (int, None) – dimensionality of the feature mapping;

	function (object, None) – a callable function to be used as feature
mapping. Only needed when using a functional mapping.

	Returns

	The class implementing the requested type of features.

	
get_action_features(phi_state, action, n_actions)

	Compute an array of size len(phi_state) * n_actions filled with
zeros, except for elements from len(phi_state) * action to
len(phi_state) * (action + 1) that are filled with phi_state. This
is used to compute state-action features.

	Parameters

	
	phi_state (np.ndarray) – the feature of the state;

	action (np.ndarray) – the action whose features have to be computed;

	n_actions (int) – the number of actions.

	Returns

	The state-action features.

The factory method returns a class that extends the abstract class
FeatureImplementation.

The documentation for every feature type can be found here:

	Basis
	Fourier

	Gaussian RBF

	Polynomial

	Tensors
	Gaussian tensor

	Tiles
	Rectangular Tiles

	Voronoi Tiles

Basis

Fourier

	
class FourierBasis(low, delta, c, dimensions=None)

	Bases: object

Class implementing Fourier basis functions. The value of the feature
is computed using the formula:

\[\sum \cos{\pi(X - m)/\Delta c}\]

where X is the input, m is the vector of the minumum input values (for each
dimensions) , Delta is the vector of maximum

	
__init__(low, delta, c, dimensions=None)

	Constructor.

	Parameters

	
	low (np.ndarray) – vector of minimum values of the input variables;

	delta (np.ndarray) – vector of the maximum difference between two
values of the input variables, i.e. delta = high - low;

	c (np.ndarray) – vector of weights for the state variables;

	dimensions (list, None) – list of the dimensions of the input to be
considered by the feature.

	
__call__(x)

	Call self as a function.

	
static generate(low, high, n, dimensions=None)

	Factory method to build a set of fourier basis.

	Parameters

	
	low (np.ndarray) – vector of minimum values of the input variables;

	high (np.ndarray) – vector of maximum values of the input variables;

	n (int) – number of harmonics to consider for each state variable

	dimensions (list, None) – list of the dimensions of the input to be
considered by the features.

	Returns

	The list of the generated fourier basis functions.

Gaussian RBF

	
class GaussianRBF(mean, scale, dimensions=None)

	Bases: object

Class implementing Gaussian radial basis functions. The value of the feature
is computed using the formula:

\[\sum \dfrac{(X_i - \mu_i)^2}{\sigma_i}\]

where X is the input, mu is the mean vector and sigma is the scale
parameter vector.

	
__init__(mean, scale, dimensions=None)

	Constructor.

	Parameters

	
	mean (np.ndarray) – the mean vector of the feature;

	scale (np.ndarray) – the scale vector of the feature;

	dimensions (list, None) – list of the dimensions of the input to be
considered by the feature. The number of dimensions must match
the dimensionality of mean and scale.

	
__call__(x)

	Call self as a function.

	
static generate(n_centers, low, high, dimensions=None)

	Factory method to build uniformly spaced gaussian radial basis functions
with a 25% overlap.

	Parameters

	
	n_centers (list) – list of the number of radial basis functions to be
used for each dimension.

	low (np.ndarray) – lowest value for each dimension;

	high (np.ndarray) – highest value for each dimension;

	dimensions (list, None) – list of the dimensions of the input to be
considered by the feature. The number of dimensions must match
the number of elements in n_centers and low.

	Returns

	The list of the generated radial basis functions.

Polynomial

	
class PolynomialBasis(dimensions=None, degrees=None)

	Bases: object

Class implementing polynomial basis functions. The value of the feature
is computed using the formula:

\[\prod X_i^{d_i}\]

where X is the input and d is the vector of the exponents of the polynomial.

	
__init__(dimensions=None, degrees=None)

	Constructor. If both parameters are None, the constant feature is built.

	Parameters

	
	dimensions (list, None) – list of the dimensions of the input to be
considered by the feature;

	degrees (list, None) – list of the degrees of each dimension to be
considered by the feature. It must match the number of elements
of dimensions.

	
__call__(x)

	Call self as a function.

	
static _compute_exponents(order, n_variables)

	Find the exponents of a multivariate polynomial expression of order
order and n_variables number of variables.

	Parameters

	
	order (int) – the maximum order of the polynomial;

	n_variables (int) – the number of elements of the input vector.

	Yields

	The current exponent of the polynomial.

	
static generate(max_degree, input_size)

	Factory method to build a polynomial of order max_degree based on
the first input_size dimensions of the input.

	Parameters

	
	max_degree (int) – maximum degree of the polynomial;

	input_size (int) – size of the input.

	Returns

	The list of the generated polynomial basis functions.

Tensors

Gaussian tensor

	
class GaussianRBFTensor(mu, scale, dim, use_cuda)

	Bases: sphinx.ext.autodoc.importer._MockObject

Pytorch module to implement a gaussian radial basis function.

	
__init__(mu, scale, dim, use_cuda)

	Constructor.

	Parameters

	
	mu (np.ndarray) – centers of the gaussian RBFs;

	scale (np.ndarray) – scales for the RBFs;

	dim (np.ndarray) – list of dimension to be considered for the computation of the features;

	use_cuda (bool) – whether to use cuda for the computation or not.

	
static generate(n_centers, low, high, dimensions=None, use_cuda=False)

	Factory method that generates the list of dictionaries to build the
tensors representing a set of uniformly spaced Gaussian radial basis
functions with a 25% overlap.

	Parameters

	
	n_centers (list) – list of the number of radial basis functions to be
used for each dimension;

	low (np.ndarray) – lowest value for each dimension;

	high (np.ndarray) – highest value for each dimension;

	dimensions (list, None) – list of the dimensions of the input to be
considered by the feature. The number of dimensions must match
the number of elements in n_centers and low;

	use_cuda (bool) – whether to use cuda for the computation or not.

	Returns

	The list of dictionaries as described above.

Tiles

Rectangular Tiles

	
class Tiles(x_range, n_tiles, state_components=None)

	Bases: object

Class implementing rectangular tiling. For each point in the state space,
this class can be used to compute the index of the corresponding tile.

	
__init__(x_range, n_tiles, state_components=None)

	Constructor.

	Parameters

	
	x_range (list) – list of two-elements lists specifying the range of
each state variable;

	n_tiles (list) – list of the number of tiles to be used for each
dimension.

	state_components (list, None) – list of the dimensions of the input
to be considered by the tiling. The number of elements must
match the number of elements in x_range and n_tiles.

	
__call__(x)

	Call self as a function.

	
static generate(n_tilings, n_tiles, low, high, uniform=False)

	Factory method to build n_tilings tilings of n_tiles tiles with
a range between low and high for each dimension.

	Parameters

	
	n_tilings (int) – number of tilings, or -1 to compute the number
automatically;

	n_tiles (list) – number of tiles for each tilings for each dimension;

	low (np.ndarray) – lowest value for each dimension;

	high (np.ndarray) – highest value for each dimension.

	uniform (bool, False) – if True the displacement for each tiling will
be w/n_tilings, where w is the tile width.
Otherwise, the displacement will be
k*w/n_tilings, where k=2i+1, where i is the
dimension index.

	Returns

	The list of the generated tiles.

Voronoi Tiles

	
class VoronoiTiles(prototypes)

	Bases: object

Class implementing voronoi tiling. For each point in the state space,
this class can be used to compute the index of the corresponding tile.

	
__init__(prototypes)

	Constructor.

	Parameters

	prototypes (list) – list of prototypes to compute the partition.

	
__call__(x)

	Call self as a function.

	
static generate(n_tilings, n_prototypes, low=None, high=None, mu=None, sigma=None)

	Factory method to build n_tilings tilings of n_prototypes.
Prototypes are generated randomly sampled. If low and high are provided,
prototypes are sampled uniformly between low and high, otherwise mu and
sigma must be specified and prototypes are sampled from the corresponding
Gaussian.

	Parameters

	
	n_tilings (int) – number of tilings, or -1 to compute the number
automatically;

	n_prototypes (list) – number of prototypes for each tiling;

	low (np.ndarray, None) – lowest value for each dimension, needed for
uniform sampling;

	high (np.ndarray, None) – highest value for each dimension, needed for
uniform sampling.

	mu (np.ndarray, None) – mean value for each dimension, needed for
Gaussian sampling.

	sigma (np.ndarray, None) – variance along each dimension, needed for
Gaussian sampling.

	Returns

	The list of the generated tiles.

Policy

	
class Policy

	Bases: mushroom_rl.core.serialization.Serializable

Interface representing a generic policy.
A policy is a probability distribution that gives the probability of taking
an action given a specified state.
A policy is used by mushroom agents to interact with the environment.

	
__call__(*args)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
__init__

	Initialize self. See help(type(self)) for accurate signature.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
class ParametricPolicy

	Bases: mushroom_rl.policy.policy.Policy

Interface for a generic parametric policy.
A parametric policy is a policy that depends on set of parameters,
called the policy weights.
If the policy is differentiable, the derivative of the probability for a
specified state-action pair can be provided.

	
diff_log(state, action)

	Compute the gradient of the logarithm of the probability density
function, in the specified state and action pair, i.e.:

\[\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the gradient is computed

	action (np.ndarray) – the action where the gradient is computed

	Returns

	The gradient of the logarithm of the pdf w.r.t. the policy weights

	
diff(state, action)

	Compute the derivative of the probability density function, in the
specified state and action pair. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\theta}p(s,a)=p(s,a)\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the derivative is computed

	action (np.ndarray) – the action where the derivative is computed

	Returns

	The derivative w.r.t. the policy weights

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy.

	
get_weights()

	Getter.

	Returns

	The current policy weights.

	
weights_size

	Property.

	Returns

	The size of the policy weights.

	
__call__(*args)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
__init__

	Initialize self. See help(type(self)) for accurate signature.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

Deterministic policy

	
class DeterministicPolicy(mu)

	Bases: mushroom_rl.policy.policy.ParametricPolicy

Simple parametric policy representing a deterministic policy. As
deterministic policies are degenerate probability functions where all
the probability mass is on the deterministic action,they are not
differentiable, even if the mean value approximator is differentiable.

	
__init__(mu)

	Constructor.

	Parameters

	mu (Regressor) – the regressor representing the action to select
in each state.

	
get_regressor()

	Getter.

	Returns

	The regressor that is used to map state to actions.

	
__call__(state, action)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy.

	
get_weights()

	Getter.

	Returns

	The current policy weights.

	
weights_size

	Property.

	Returns

	The size of the policy weights.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
diff(state, action)

	Compute the derivative of the probability density function, in the
specified state and action pair. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\theta}p(s,a)=p(s,a)\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the derivative is computed

	action (np.ndarray) – the action where the derivative is computed

	Returns

	The derivative w.r.t. the policy weights

	
diff_log(state, action)

	Compute the gradient of the logarithm of the probability density
function, in the specified state and action pair, i.e.:

\[\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the gradient is computed

	action (np.ndarray) – the action where the gradient is computed

	Returns

	The gradient of the logarithm of the pdf w.r.t. the policy weights

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

Gaussian policy

	
class AbstractGaussianPolicy

	Bases: mushroom_rl.policy.policy.ParametricPolicy

Abstract class of Gaussian policies.

	
__call__(state, action)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
__init__

	Initialize self. See help(type(self)) for accurate signature.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
diff(state, action)

	Compute the derivative of the probability density function, in the
specified state and action pair. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\theta}p(s,a)=p(s,a)\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the derivative is computed

	action (np.ndarray) – the action where the derivative is computed

	Returns

	The derivative w.r.t. the policy weights

	
diff_log(state, action)

	Compute the gradient of the logarithm of the probability density
function, in the specified state and action pair, i.e.:

\[\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the gradient is computed

	action (np.ndarray) – the action where the gradient is computed

	Returns

	The gradient of the logarithm of the pdf w.r.t. the policy weights

	
get_weights()

	Getter.

	Returns

	The current policy weights.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy.

	
weights_size

	Property.

	Returns

	The size of the policy weights.

	
class GaussianPolicy(mu, sigma)

	Bases: mushroom_rl.policy.gaussian_policy.AbstractGaussianPolicy

Gaussian policy.
This is a differentiable policy for continuous action spaces.
The policy samples an action in every state following a gaussian
distribution, where the mean is computed in the state and the covariance
matrix is fixed.

	
__init__(mu, sigma)

	Constructor.

	Parameters

	
	mu (Regressor) – the regressor representing the mean w.r.t. the
state;

	sigma (np.ndarray) – a square positive definite matrix representing
the covariance matrix. The size of this matrix must be n x n,
where n is the action dimensionality.

	
set_sigma(sigma)

	Setter.

	Parameters

	sigma (np.ndarray) – the new covariance matrix. Must be a square
positive definite matrix.

	
diff_log(state, action)

	Compute the gradient of the logarithm of the probability density
function, in the specified state and action pair, i.e.:

\[\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the gradient is computed

	action (np.ndarray) – the action where the gradient is computed

	Returns

	The gradient of the logarithm of the pdf w.r.t. the policy weights

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy.

	
get_weights()

	Getter.

	Returns

	The current policy weights.

	
weights_size

	Property.

	Returns

	The size of the policy weights.

	
__call__(state, action)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
diff(state, action)

	Compute the derivative of the probability density function, in the
specified state and action pair. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\theta}p(s,a)=p(s,a)\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the derivative is computed

	action (np.ndarray) – the action where the derivative is computed

	Returns

	The derivative w.r.t. the policy weights

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
class DiagonalGaussianPolicy(mu, std)

	Bases: mushroom_rl.policy.gaussian_policy.AbstractGaussianPolicy

Gaussian policy with learnable standard deviation.
The Covariance matrix is
constrained to be a diagonal matrix, where the diagonal is the squared
standard deviation vector.
This is a differentiable policy for continuous action spaces.
This policy is similar to the gaussian policy, but the weights includes
also the standard deviation.

	
__init__(mu, std)

	Constructor.

	Parameters

	
	mu (Regressor) – the regressor representing the mean w.r.t. the
state;

	std (np.ndarray) – a vector of standard deviations. The length of
this vector must be equal to the action dimensionality.

	
set_std(std)

	Setter.

	Parameters

	std (np.ndarray) – the new standard deviation. Must be a square
positive definite matrix.

	
diff_log(state, action)

	Compute the gradient of the logarithm of the probability density
function, in the specified state and action pair, i.e.:

\[\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the gradient is computed

	action (np.ndarray) – the action where the gradient is computed

	Returns

	The gradient of the logarithm of the pdf w.r.t. the policy weights

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy.

	
get_weights()

	Getter.

	Returns

	The current policy weights.

	
weights_size

	Property.

	Returns

	The size of the policy weights.

	
__call__(state, action)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
diff(state, action)

	Compute the derivative of the probability density function, in the
specified state and action pair. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\theta}p(s,a)=p(s,a)\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the derivative is computed

	action (np.ndarray) – the action where the derivative is computed

	Returns

	The derivative w.r.t. the policy weights

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
class StateStdGaussianPolicy(mu, std, eps=1e-06)

	Bases: mushroom_rl.policy.gaussian_policy.AbstractGaussianPolicy

Gaussian policy with learnable standard deviation.
The Covariance matrix is
constrained to be a diagonal matrix, where the diagonal is the squared
standard deviation, which is computed for each state.
This is a differentiable policy for continuous action spaces.
This policy is similar to the diagonal gaussian policy, but a parametric
regressor is used to compute the standard deviation, so the standard
deviation depends on the current state.

	
__init__(mu, std, eps=1e-06)

	Constructor.

	Parameters

	
	mu (Regressor) – the regressor representing the mean w.r.t. the
state;

	std (Regressor) – the regressor representing the standard
deviations w.r.t. the state. The output dimensionality of the
regressor must be equal to the action dimensionality;

	eps (float, 1e-6) – A positive constant added to the variance to
ensure that is always greater than zero.

	
diff_log(state, action)

	Compute the gradient of the logarithm of the probability density
function, in the specified state and action pair, i.e.:

\[\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the gradient is computed

	action (np.ndarray) – the action where the gradient is computed

	Returns

	The gradient of the logarithm of the pdf w.r.t. the policy weights

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy.

	
get_weights()

	Getter.

	Returns

	The current policy weights.

	
weights_size

	Property.

	Returns

	The size of the policy weights.

	
__call__(state, action)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
diff(state, action)

	Compute the derivative of the probability density function, in the
specified state and action pair. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\theta}p(s,a)=p(s,a)\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the derivative is computed

	action (np.ndarray) – the action where the derivative is computed

	Returns

	The derivative w.r.t. the policy weights

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
class StateLogStdGaussianPolicy(mu, log_std)

	Bases: mushroom_rl.policy.gaussian_policy.AbstractGaussianPolicy

Gaussian policy with learnable standard deviation.
The Covariance matrix is
constrained to be a diagonal matrix, the diagonal is computed by an
exponential transformation of the logarithm of the standard deviation
computed in each state.
This is a differentiable policy for continuous action spaces.
This policy is similar to the State std gaussian policy, but here the
regressor represents the logarithm of the standard deviation.

	
__init__(mu, log_std)

	Constructor.

	Parameters

	
	mu (Regressor) – the regressor representing the mean w.r.t. the
state;

	log_std (Regressor) – a regressor representing the logarithm of the
variance w.r.t. the state. The output dimensionality of the
regressor must be equal to the action dimensionality.

	
diff_log(state, action)

	Compute the gradient of the logarithm of the probability density
function, in the specified state and action pair, i.e.:

\[\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the gradient is computed

	action (np.ndarray) – the action where the gradient is computed

	Returns

	The gradient of the logarithm of the pdf w.r.t. the policy weights

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy.

	
get_weights()

	Getter.

	Returns

	The current policy weights.

	
weights_size

	Property.

	Returns

	The size of the policy weights.

	
__call__(state, action)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
diff(state, action)

	Compute the derivative of the probability density function, in the
specified state and action pair. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\theta}p(s,a)=p(s,a)\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the derivative is computed

	action (np.ndarray) – the action where the derivative is computed

	Returns

	The derivative w.r.t. the policy weights

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

Noise policy

	
class OrnsteinUhlenbeckPolicy(mu, sigma, theta, dt, x0=None)

	Bases: mushroom_rl.policy.policy.ParametricPolicy

Ornstein-Uhlenbeck process as implemented in:
https://github.com/openai/baselines/blob/master/baselines/ddpg/noise.py.

This policy is commonly used in the Deep Deterministic Policy Gradient
algorithm.

	
__init__(mu, sigma, theta, dt, x0=None)

	Constructor.

	Parameters

	
	mu (Regressor) – the regressor representing the mean w.r.t. the
state;

	sigma (np.ndarray) – average magnitude of the random flactations per
square-root time;

	theta (float) – rate of mean reversion;

	dt (float) – time interval;

	x0 (np.ndarray, None) – initial values of noise.

	
__call__(state, action)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy.

	
get_weights()

	Getter.

	Returns

	The current policy weights.

	
weights_size

	Property.

	Returns

	The size of the policy weights.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
diff(state, action)

	Compute the derivative of the probability density function, in the
specified state and action pair. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\theta}p(s,a)=p(s,a)\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the derivative is computed

	action (np.ndarray) – the action where the derivative is computed

	Returns

	The derivative w.r.t. the policy weights

	
diff_log(state, action)

	Compute the gradient of the logarithm of the probability density
function, in the specified state and action pair, i.e.:

\[\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the gradient is computed

	action (np.ndarray) – the action where the gradient is computed

	Returns

	The gradient of the logarithm of the pdf w.r.t. the policy weights

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
class ClippedGaussianPolicy(mu, sigma, low, high)

	Bases: mushroom_rl.policy.policy.ParametricPolicy

Clipped Gaussian policy, as used in:

“Addressing Function Approximation Error in Actor-Critic Methods”.
Fujimoto S. et al.. 2018.

This is a non-differentiable policy for continuous action spaces.
The policy samples an action in every state following a gaussian
distribution, where the mean is computed in the state and the covariance
matrix is fixed. The action is then clipped using the given action range.
This policy is not a truncated Gaussian, as it simply clips the action
if the value is bigger than the boundaries. Thus, the non-differentiability.

	
__init__(mu, sigma, low, high)

	Constructor.

	Parameters

	
	mu (Regressor) – the regressor representing the mean w.r.t. the
state;

	sigma (np.ndarray) – a square positive definite matrix representing
the covariance matrix. The size of this matrix must be n x n,
where n is the action dimensionality;

	low (np.ndarray) – a vector containing the minimum action for each
component;

	high (np.ndarray) – a vector containing the maximum action for each
component.

	
__call__(state, action)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy.

	
get_weights()

	Getter.

	Returns

	The current policy weights.

	
weights_size

	Property.

	Returns

	The size of the policy weights.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
diff(state, action)

	Compute the derivative of the probability density function, in the
specified state and action pair. Normally it is computed w.r.t. the
derivative of the logarithm of the probability density function,
exploiting the likelihood ratio trick, i.e.:

\[\nabla_{\theta}p(s,a)=p(s,a)\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the derivative is computed

	action (np.ndarray) – the action where the derivative is computed

	Returns

	The derivative w.r.t. the policy weights

	
diff_log(state, action)

	Compute the gradient of the logarithm of the probability density
function, in the specified state and action pair, i.e.:

\[\nabla_{\theta}\log p(s,a)\]

	Parameters

	
	state (np.ndarray) – the state where the gradient is computed

	action (np.ndarray) – the action where the gradient is computed

	Returns

	The gradient of the logarithm of the pdf w.r.t. the policy weights

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

TD policy

	
class TDPolicy

	Bases: mushroom_rl.policy.policy.Policy

	
__init__()

	Constructor.

	
set_q(approximator)

	
	Parameters

	approximator (object) – the approximator to use.

	
get_q()

	
	Returns

	The approximator used by the policy.

	
__call__(*args)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
class EpsGreedy(epsilon)

	Bases: mushroom_rl.policy.td_policy.TDPolicy

Epsilon greedy policy.

	
__init__(epsilon)

	Constructor.

	Parameters

	epsilon ([float, Parameter]) – the exploration coefficient. It indicates
the probability of performing a random actions in the current
step.

	
__call__(*args)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
set_epsilon(epsilon)

	Setter.

	Parameters

	
	epsilon ([float, Parameter]) – the exploration coefficient. It indicates the

	of performing a random actions in the current step. (probability) –

	
update(*idx)

	Update the value of the epsilon parameter at the provided index (e.g. in
case of different values of epsilon for each visited state according to
the number of visits).

	Parameters

	*idx (list) – index of the parameter to be updated.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
get_q()

	
	Returns

	The approximator used by the policy.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_q(approximator)

	
	Parameters

	approximator (object) – the approximator to use.

	
class Boltzmann(beta)

	Bases: mushroom_rl.policy.td_policy.TDPolicy

Boltzmann softmax policy.

	
__init__(beta)

	Constructor.

	Parameters

	
	beta ([float, Parameter]) – the inverse of the temperature distribution. As

	temperature approaches infinity, the policy becomes more and (the) –

	random. As the temperature approaches 0.0, the policy becomes (more) –

	and more greedy. (more) –

	
__call__(*args)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
set_beta(beta)

	Setter.

	Parameters

	beta ((float, Parameter)) – the inverse of the temperature distribution.

	
update(*idx)

	Update the value of the beta parameter at the provided index (e.g. in
case of different values of beta for each visited state according to
the number of visits).

	Parameters

	*idx (list) – index of the parameter to be updated.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
get_q()

	
	Returns

	The approximator used by the policy.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_q(approximator)

	
	Parameters

	approximator (object) – the approximator to use.

	
class Mellowmax(omega, beta_min=-10.0, beta_max=10.0)

	Bases: mushroom_rl.policy.td_policy.Boltzmann

Mellowmax policy.
“An Alternative Softmax Operator for Reinforcement Learning”. Asadi K. and
Littman M.L.. 2017.

	
class MellowmaxParameter(outer, omega, beta_min, beta_max)

	Bases: mushroom_rl.utils.parameters.Parameter

	
__init__(outer, omega, beta_min, beta_max)

	Constructor.

	Parameters

	
	value (float) – initial value of the parameter;

	min_value (float, None) – minimum value that the parameter can reach
when decreasing;

	max_value (float, None) – maximum value that the parameter can reach
when increasing;

	size (tuple, (1,)) – shape of the matrix of parameters; this shape
can be used to have a single parameter for each state or
state-action tuple.

	
__call__(state)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_compute(*idx, **kwargs)

	
	Returns

	The value of the parameter in the provided index.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
initial_value

	The initial value of the parameters.

	Type

	Returns

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
update(*idx, **kwargs)

	Updates the number of visit of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter whose number of visits has to be
updated.

	
__init__(omega, beta_min=-10.0, beta_max=10.0)

	Constructor.

	Parameters

	
	omega (Parameter) – the omega parameter of the policy from which beta
of the Boltzmann policy is computed;

	beta_min (float, -10.) – one end of the bracketing interval for
minimization with Brent’s method;

	beta_max (float, 10.) – the other end of the bracketing interval for
minimization with Brent’s method.

	
set_beta(beta)

	Setter.

	Parameters

	beta ((float, Parameter)) – the inverse of the temperature distribution.

	
update(*idx)

	Update the value of the beta parameter at the provided index (e.g. in
case of different values of beta for each visited state according to
the number of visits).

	Parameters

	*idx (list) – index of the parameter to be updated.

	
__call__(*args)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
get_q()

	
	Returns

	The approximator used by the policy.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
set_q(approximator)

	
	Parameters

	approximator (object) – the approximator to use.

Torch policy

	
class TorchPolicy(use_cuda)

	Bases: mushroom_rl.policy.policy.Policy

Interface for a generic PyTorch policy.
A PyTorch policy is a policy implemented as a neural network using PyTorch.
Functions ending with ‘_t’ use tensors as input, and also as output when
required.

	
__init__(use_cuda)

	Constructor.

	Parameters

	use_cuda (bool) – whether to use cuda or not.

	
__call__(state, action)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
distribution(state)

	Compute the policy distribution in the given states.

	Parameters

	state (np.ndarray) – the set of states where the distribution is
computed.

	Returns

	The torch distribution for the provided states.

	
entropy(state=None)

	Compute the entropy of the policy.

	Parameters

	state (np.ndarray, None) – the set of states to consider. If the
entropy of the policy can be computed in closed form, then
state can be None.

	Returns

	The value of the entropy of the policy.

	
draw_action_t(state)

	Draw an action given a tensor.

	Parameters

	state (torch.Tensor) – set of states.

	Returns

	The tensor of the actions to perform in each state.

	
log_prob_t(state, action)

	Compute the logarithm of the probability of taking action in
state.

	Parameters

	
	state (torch.Tensor) – set of states.

	action (torch.Tensor) – set of actions.

	Returns

	The tensor of log-probability.

	
entropy_t(state)

	Compute the entropy of the policy.

	Parameters

	state (torch.Tensor) – the set of states to consider. If the
entropy of the policy can be computed in closed form, then
state can be None.

	Returns

	The tensor value of the entropy of the policy.

	
distribution_t(state)

	Compute the policy distribution in the given states.

	Parameters

	state (torch.Tensor) – the set of states where the distribution is
computed.

	Returns

	The torch distribution for the provided states.

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy.

	
get_weights()

	Getter.

	Returns

	The current policy weights.

	
parameters()

	Returns the trainable policy parameters, as expected by torch
optimizers.

	Returns

	List of parameters to be optimized.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
use_cuda

	True if the policy is using cuda_tensors.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
class GaussianTorchPolicy(network, input_shape, output_shape, std_0=1.0, use_cuda=False, **params)

	Bases: mushroom_rl.policy.torch_policy.TorchPolicy

Torch policy implementing a Gaussian policy with trainable standard
deviation. The standard deviation is not state-dependent.

	
__init__(network, input_shape, output_shape, std_0=1.0, use_cuda=False, **params)

	Constructor.

	Parameters

	
	network (object) – the network class used to implement the mean
regressor;

	input_shape (tuple) – the shape of the state space;

	output_shape (tuple) – the shape of the action space;

	std_0 (float, 1.) – initial standard deviation;

	params (dict) – parameters used by the network constructor.

	
draw_action_t(state)

	Draw an action given a tensor.

	Parameters

	state (torch.Tensor) – set of states.

	Returns

	The tensor of the actions to perform in each state.

	
log_prob_t(state, action)

	Compute the logarithm of the probability of taking action in
state.

	Parameters

	
	state (torch.Tensor) – set of states.

	action (torch.Tensor) – set of actions.

	Returns

	The tensor of log-probability.

	
entropy_t(state=None)

	Compute the entropy of the policy.

	Parameters

	state (torch.Tensor) – the set of states to consider. If the
entropy of the policy can be computed in closed form, then
state can be None.

	Returns

	The tensor value of the entropy of the policy.

	
distribution_t(state)

	Compute the policy distribution in the given states.

	Parameters

	state (torch.Tensor) – the set of states where the distribution is
computed.

	Returns

	The torch distribution for the provided states.

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy.

	
get_weights()

	Getter.

	Returns

	The current policy weights.

	
parameters()

	Returns the trainable policy parameters, as expected by torch
optimizers.

	Returns

	List of parameters to be optimized.

	
__call__(state, action)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
distribution(state)

	Compute the policy distribution in the given states.

	Parameters

	state (np.ndarray) – the set of states where the distribution is
computed.

	Returns

	The torch distribution for the provided states.

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
entropy(state=None)

	Compute the entropy of the policy.

	Parameters

	state (np.ndarray, None) – the set of states to consider. If the
entropy of the policy can be computed in closed form, then
state can be None.

	Returns

	The value of the entropy of the policy.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
use_cuda

	True if the policy is using cuda_tensors.

	
class BoltzmannTorchPolicy(network, input_shape, output_shape, beta, use_cuda=False, **params)

	Bases: mushroom_rl.policy.torch_policy.TorchPolicy

Torch policy implementing a Boltzmann policy.

	
__init__(network, input_shape, output_shape, beta, use_cuda=False, **params)

	Constructor.

	Parameters

	
	network (object) – the network class used to implement the mean
regressor;

	input_shape (tuple) – the shape of the state space;

	output_shape (tuple) – the shape of the action space;

	beta ((float, Parameter)) – the inverse of the temperature distribution. As
the temperature approaches infinity, the policy becomes more and
more random. As the temperature approaches 0.0, the policy becomes
more and more greedy.

	params (dict) – parameters used by the network constructor.

	
draw_action_t(state)

	Draw an action given a tensor.

	Parameters

	state (torch.Tensor) – set of states.

	Returns

	The tensor of the actions to perform in each state.

	
log_prob_t(state, action)

	Compute the logarithm of the probability of taking action in
state.

	Parameters

	
	state (torch.Tensor) – set of states.

	action (torch.Tensor) – set of actions.

	Returns

	The tensor of log-probability.

	
entropy_t(state)

	Compute the entropy of the policy.

	Parameters

	state (torch.Tensor) – the set of states to consider. If the
entropy of the policy can be computed in closed form, then
state can be None.

	Returns

	The tensor value of the entropy of the policy.

	
distribution_t(state)

	Compute the policy distribution in the given states.

	Parameters

	state (torch.Tensor) – the set of states where the distribution is
computed.

	Returns

	The torch distribution for the provided states.

	
set_weights(weights)

	Setter.

	Parameters

	weights (np.ndarray) – the vector of the new weights to be used by
the policy.

	
get_weights()

	Getter.

	Returns

	The current policy weights.

	
parameters()

	Returns the trainable policy parameters, as expected by torch
optimizers.

	Returns

	List of parameters to be optimized.

	
__call__(state, action)

	Compute the probability of taking action in a certain state following
the policy.

	Parameters

	*args (list) – list containing a state or a state and an action.

	Returns

	The probability of all actions following the policy in the given
state if the list contains only the state, else the probability
of the given action in the given state following the policy. If
the action space is continuous, state and action must be provided

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
distribution(state)

	Compute the policy distribution in the given states.

	Parameters

	state (np.ndarray) – the set of states where the distribution is
computed.

	Returns

	The torch distribution for the provided states.

	
draw_action(state)

	Sample an action in state using the policy.

	Parameters

	state (np.ndarray) – the state where the agent is.

	Returns

	The action sampled from the policy.

	
entropy(state=None)

	Compute the entropy of the policy.

	Parameters

	state (np.ndarray, None) – the set of states to consider. If the
entropy of the policy can be computed in closed form, then
state can be None.

	Returns

	The value of the entropy of the policy.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
reset()

	Useful when the policy needs a special initialization at the beginning
of an episode.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
use_cuda

	True if the policy is using cuda_tensors.

Solvers

Dynamic programming

	
value_iteration(prob, reward, gamma, eps)

	Value iteration algorithm to solve a dynamic programming problem.

	Parameters

	
	prob (np.ndarray) – transition probability matrix;

	reward (np.ndarray) – reward matrix;

	gamma (float) – discount factor;

	eps (float) – accuracy threshold.

	Returns

	The optimal value of each state.

	
policy_iteration(prob, reward, gamma)

	Policy iteration algorithm to solve a dynamic programming problem.

	Parameters

	
	prob (np.ndarray) – transition probability matrix;

	reward (np.ndarray) – reward matrix;

	gamma (float) – discount factor.

	Returns

	The optimal value of each state and the optimal policy.

Car-On-Hill brute-force solver

	
step(mdp, state, action)

	Perform a step in the tree.

	Parameters

	
	mdp (CarOnHill) – the Car-On-Hill environment;

	state (np.array) – the state;

	action (np.array) – the action.

	Returns

	The resulting transition executing action in state.

	
bfs(mdp, frontier, k, max_k)

	Perform Breadth-First tree search.

	Parameters

	
	mdp (CarOnHill) – the Car-On-Hill environment;

	frontier (list) – the state at the frontier of the BFS;

	k (int) – the current depth of the tree;

	max_k (int) – maximum depth to consider.

	Returns

	A tuple containing a flag for the algorithm ending, and the updated
depth of the tree.

	
solve_car_on_hill(mdp, states, actions, gamma, max_k=50)

	Solver of the Car-On-Hill environment.

	Parameters

	
	mdp (CarOnHill) – the Car-On-Hill environment;

	states (np.ndarray) – the states;

	actions (np.ndarray) – the actions;

	gamma (float) – the discount factor;

	max_k (int, 50) – maximum depth to consider.

	Returns

	The Q-value for each state-action tuple.

LQR solver

	
compute_lqr_feedback_gain(lqr, max_iterations=100)

	Computes the optimal gain matrix K.

	Parameters

	
	lqr (LQR) – LQR environment;

	max_iterations (int) – max iterations for convergence.

	Returns

	Feedback gain matrix K.

	
compute_lqr_P(lqr, K)

	Computes the P matrix for a given gain matrix K.

	Parameters

	
	lqr (LQR) – LQR environment;

	K (np.ndarray) – controller matrix.

	Returns

	The P matrix of the value function.

	
compute_lqr_V(s, lqr, K)

	Computes the value function at a state s, with the given gain matrix K.

	Parameters

	
	s (np.ndarray) – state;

	lqr (LQR) – LQR environment;

	K (np.ndarray) – controller matrix.

	Returns

	The value function at s

	
compute_lqr_V_gaussian_policy(s, lqr, K, Sigma)

	Computes the value function at a state s, with the given gain matrix K and
covariance Sigma.

	Parameters

	
	s (np.ndarray) – state;

	lqr (LQR) – LQR environment;

	K (np.ndarray) – controller matrix;

	Sigma (np.ndarray) – covariance matrix.

	Returns

	The value function at s.

	
compute_lqr_Q(s, a, lqr, K)

	Computes the state-action value function Q at a state-action pair (s, a),
with the given gain matrix K.

	Parameters

	
	s (np.ndarray) – state;

	a (np.ndarray) – action;

	lqr (LQR) – LQR environment;

	K (np.ndarray) – controller matrix.

	Returns

	The Q function at s, a.

	
compute_lqr_Q_gaussian_policy(s, a, lqr, K, Sigma)

	Computes the state-action value function Q at a state-action pair (s, a),
with the given gain matrix K and covariance Sigma.

	Parameters

	
	s (np.ndarray) – state;

	a (np.ndarray) – action;

	lqr (LQR) – LQR environment;

	K (np.ndarray) – controller matrix;

	Sigma (np.ndarray) – covariance matrix.

	Returns

	The Q function at (s, a).

	
compute_lqr_V_gaussian_policy_gradient_K(s, lqr, K, Sigma)

	Computes the gradient of the objective function J (equal to the value
function V) at state s, w.r.t. the controller matrix K, with the current
policy parameters K and Sigma. J(s, K, Sigma) = ValueFunction(s, K, Sigma).

	Parameters

	
	s (np.ndarray) – state;

	lqr (LQR) – LQR environment;

	K (np.ndarray) – controller matrix;

	Sigma (np.ndarray) – covariance matrix.

	Returns

	The gradient of J wrt to K.

	
compute_lqr_Q_gaussian_policy_gradient_K(s, a, lqr, K, Sigma)

	Computes the gradient of the state-action Value function at state-action
pair (s, a), w.r.t. the controller matrix K, with the current policy
parameters K and Sigma.

	Parameters

	
	s (np.ndarray) – state;

	a (np.ndarray) – action;

	lqr (LQR) – LQR environment;

	K (np.ndarray) – controller matrix;

	Sigma (np.ndarray) – covariance matrix.

	Returns

	The gradient of Q wrt to K.

Utils

Angles

	
normalize_angle_positive(angle)

	Wrap the angle between 0 and 2 * pi.

	Parameters

	angle (float) – angle to wrap.

	Returns

	The wrapped angle.

	
normalize_angle(angle)

	Wrap the angle between -pi and pi.

	Parameters

	angle (float) – angle to wrap.

	Returns

	The wrapped angle.

	
shortest_angular_distance(from_angle, to_angle)

	Compute the shortest distance between two angles

	Parameters

	
	from_angle (float) – starting angle;

	to_angle (float) – final angle.

	Returns

	The shortest distance between from_angle and to_angle.

	
quat_to_euler(quat)

	Convert a quaternion to euler angles.

	Parameters

	quat (np.ndarray) – quaternion to be converted, must be in format [w, x, y, z]

	Returns

	The euler angles [x, y, z] representation of the quaternion

	
euler_to_quat(euler)

	Convert euler angles into a quaternion.

	Parameters

	euler (np.ndarray) – euler angles to be converted

	Returns

	Quaternion in format [w, x, y, z]

Callbacks

	
class Callback

	Bases: object

Interface for all basic callbacks. Implements a list in which it is possible
to store data and methods to query and clean the content stored by the
callback.

	
__init__()

	Constructor.

	
__call__(dataset)

	Add samples to the samples list.

	Parameters

	dataset (list) – the samples to collect.

	
get()

	
	Returns

	The current collected data as a list.

	
clean()

	Delete the current stored data list

	
class CollectDataset

	Bases: mushroom_rl.utils.callbacks.callback.Callback

This callback can be used to collect samples during the learning of the
agent.

	
__call__(dataset)

	Add samples to the samples list.

	Parameters

	dataset (list) – the samples to collect.

	
class CollectQ(approximator)

	Bases: mushroom_rl.utils.callbacks.callback.Callback

This callback can be used to collect the action values in all states at the
current time step.

	
__init__(approximator)

	Constructor.

	Parameters

	approximator ([Table, EnsembleTable]) – the approximator to use to
predict the action values.

	
__call__(dataset)

	Add samples to the samples list.

	Parameters

	dataset (list) – the samples to collect.

	
class CollectMaxQ(approximator, state)

	Bases: mushroom_rl.utils.callbacks.callback.Callback

This callback can be used to collect the maximum action value in a given
state at each call.

	
__init__(approximator, state)

	Constructor.

	Parameters

	
	approximator ([Table, EnsembleTable]) – the approximator to use;

	state (np.ndarray) – the state to consider.

	
__call__(dataset)

	Add samples to the samples list.

	Parameters

	dataset (list) – the samples to collect.

	
class CollectParameters(parameter, *idx)

	Bases: mushroom_rl.utils.callbacks.callback.Callback

This callback can be used to collect the values of a parameter
(e.g. learning rate) during a run of the agent.

	
__init__(parameter, *idx)

	Constructor.

	Parameters

	
	parameter (Parameter) – the parameter whose values have to be
collected;

	*idx (list) – index of the parameter when the parameter is
tabular.

	
__call__(dataset)

	Add samples to the samples list.

	Parameters

	dataset (list) – the samples to collect.

Dataset

	
parse_dataset(dataset, features=None)

	Split the dataset in its different components and return them.

	Parameters

	
	dataset (list) – the dataset to parse;

	features (object, None) – features to apply to the states.

	Returns

	The np.ndarray of state, action, reward, next_state, absorbing flag and
last step flag. Features are applied to state and next_state,
when provided.

	
arrays_as_dataset(states, actions, rewards, next_states, absorbings, lasts)

	Creates a dataset of transitions from the provided arrays.

	Parameters

	
	states (np.ndarray) – array of states;

	actions (np.ndarray) – array of actions;

	rewards (np.ndarray) – array of rewards;

	next_states (np.ndarray) – array of next_states;

	absorbings (np.ndarray) – array of absorbing flags;

	lasts (np.ndarray) – array of last flags.

	Returns

	The list of transitions.

	
episodes_length(dataset)

	Compute the length of each episode in the dataset.

	Parameters

	dataset (list) – the dataset to consider.

	Returns

	A list of length of each episode in the dataset.

	
select_first_episodes(dataset, n_episodes, parse=False)

	Return the first n_episodes episodes in the provided dataset.

	Parameters

	
	dataset (list) – the dataset to consider;

	n_episodes (int) – the number of episodes to pick from the dataset;

	parse (bool, False) – whether to parse the dataset to return.

	Returns

	A subset of the dataset containing the first n_episodes episodes.

	
select_random_samples(dataset, n_samples, parse=False)

	Return the randomly picked desired number of samples in the provided
dataset.

	Parameters

	
	dataset (list) – the dataset to consider;

	n_samples (int) – the number of samples to pick from the dataset;

	parse (bool, False) – whether to parse the dataset to return.

	Returns

	A subset of the dataset containing randomly picked n_samples
samples.

	
compute_J(dataset, gamma=1.0)

	Compute the cumulative discounted reward of each episode in the dataset.

	Parameters

	
	dataset (list) – the dataset to consider;

	gamma (float, 1.) – discount factor.

	Returns

	The cumulative discounted reward of each episode in the dataset.

	
compute_metrics(dataset, gamma=1.0)

	Compute the metrics of each complete episode in the dataset.

	Parameters

	
	dataset (list) – the dataset to consider;

	gamma (float, 1.) – the discount factor.

	Returns

	The minimum score reached in an episode,
the maximum score reached in an episode,
the mean score reached,
the number of completed games.

If episode has not been completed, it returns 0 for all values.

Eligibility trace

	
EligibilityTrace(shape, name='replacing')

	Factory method to create an eligibility trace of the provided type.

	Parameters

	
	shape (list) – shape of the eligibility trace table;

	name (str, 'replacing') – type of the eligibility trace.

	Returns

	The eligibility trace table of the provided shape and type.

	
class ReplacingTrace(shape, initial_value=0.0, dtype=None)

	Bases: mushroom_rl.utils.table.Table

Replacing trace.

	
reset()

	

	
update(state, action)

	

	
__init__(shape, initial_value=0.0, dtype=None)

	Constructor.

	Parameters

	
	shape (tuple) – the shape of the tabular regressor.

	initial_value (float, 0.) – the initial value for each entry of the
tabular regressor.

	dtype ([int, float], None) – the dtype of the table array.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
static _append_folder(folder, name)

	

	
static _get_serialization_method(class_name)

	

	
static _load_json(zip_file, name)

	

	
classmethod _load_list(zip_file, folder, length)

	

	
static _load_mushroom(zip_file, name)

	

	
static _load_numpy(zip_file, name)

	

	
static _load_pickle(zip_file, name)

	

	
static _load_torch(zip_file, name)

	

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
static _save_json(zip_file, name, obj, folder, **_)

	

	
static _save_mushroom(zip_file, name, obj, folder, full_save)

	

	
static _save_numpy(zip_file, name, obj, folder, **_)

	

	
static _save_pickle(zip_file, name, obj, folder, **_)

	

	
static _save_torch(zip_file, name, obj, folder, **_)

	

	
copy()

	
	Returns

	A deepcopy of the agent.

	
fit(x, y)

	
	Parameters

	
	x (int) – index of the table to be filled;

	y (float) – value to fill in the table.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
classmethod load_zip(zip_file, folder='')

	

	
n_actions

	The number of actions considered by the table.

	Type

	Returns

	
predict(*z)

	Predict the output of the table given an input.

	Parameters

	
	*z (list) – list of input of the model. If the table is a Q-table,

	list may contain states or states and actions depending (this) – on whether the call requires to predict all q-values or only
one q-value corresponding to the provided action;

	Returns

	The table prediction.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
shape

	The shape of the table.

	Type

	Returns

	
class AccumulatingTrace(shape, initial_value=0.0, dtype=None)

	Bases: mushroom_rl.utils.table.Table

Accumulating trace.

	
reset()

	

	
update(state, action)

	

	
__init__(shape, initial_value=0.0, dtype=None)

	Constructor.

	Parameters

	
	shape (tuple) – the shape of the tabular regressor.

	initial_value (float, 0.) – the initial value for each entry of the
tabular regressor.

	dtype ([int, float], None) – the dtype of the table array.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
static _append_folder(folder, name)

	

	
static _get_serialization_method(class_name)

	

	
static _load_json(zip_file, name)

	

	
classmethod _load_list(zip_file, folder, length)

	

	
static _load_mushroom(zip_file, name)

	

	
static _load_numpy(zip_file, name)

	

	
static _load_pickle(zip_file, name)

	

	
static _load_torch(zip_file, name)

	

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
static _save_json(zip_file, name, obj, folder, **_)

	

	
static _save_mushroom(zip_file, name, obj, folder, full_save)

	

	
static _save_numpy(zip_file, name, obj, folder, **_)

	

	
static _save_pickle(zip_file, name, obj, folder, **_)

	

	
static _save_torch(zip_file, name, obj, folder, **_)

	

	
copy()

	
	Returns

	A deepcopy of the agent.

	
fit(x, y)

	
	Parameters

	
	x (int) – index of the table to be filled;

	y (float) – value to fill in the table.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
classmethod load_zip(zip_file, folder='')

	

	
n_actions

	The number of actions considered by the table.

	Type

	Returns

	
predict(*z)

	Predict the output of the table given an input.

	Parameters

	
	*z (list) – list of input of the model. If the table is a Q-table,

	list may contain states or states and actions depending (this) – on whether the call requires to predict all q-values or only
one q-value corresponding to the provided action;

	Returns

	The table prediction.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
shape

	The shape of the table.

	Type

	Returns

Features

	
uniform_grid(n_centers, low, high)

	This function is used to create the parameters of uniformly spaced radial
basis functions with 25% of overlap. It creates a uniformly spaced grid of
n_centers[i] points in each ranges[i]. Also returns a vector
containing the appropriate scales of the radial basis functions.

	Parameters

	
	n_centers (list) – number of centers of each dimension;

	low (np.ndarray) – lowest value for each dimension;

	high (np.ndarray) – highest value for each dimension.

	Returns

	The uniformly spaced grid and the scale vector.

Folder

	
mk_dir_recursive(dir_path)

	Create a directory and, if needed, all the directory tree. Differently from
os.mkdir, this function does not raise exception when the directory already
exists.

	Parameters

	dir_path (str) – the path of the directory to create.

	
force_symlink(src, dst)

	Create a symlink deleting the previous one, if it already exists.

	Parameters

	
	src (str) – source;

	dst (str) – destination.

Frames

	
class LazyFrames(frames, history_length)

	Bases: object

From OpenAI Baseline.
https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py

This class provides a solution to optimize the use of memory when
concatenating different frames, e.g. Atari frames in DQN. The frames are
individually stored in a list and, when numpy arrays containing them are
created, the reference to each frame is used instead of a copy.

	
__init__(frames, history_length)

	Initialize self. See help(type(self)) for accurate signature.

	
preprocess_frame(obs, img_size)

	Convert a frame from rgb to grayscale and resize it.

	Parameters

	
	obs (np.ndarray) – array representing an rgb frame;

	img_size (tuple) – target size for images.

	Returns

	The transformed frame as 8 bit integer array.

Minibatches

	
minibatch_number(size, batch_size)

	Function to retrieve the number of batches, given a batch sizes.

	Parameters

	
	size (int) – size of the dataset;

	batch_size (int) – size of the batches.

	Returns

	The number of minibatches in the dataset.

	
minibatch_generator(batch_size, *dataset)

	Generator that creates a minibatch from the full dataset.

	Parameters

	
	batch_size (int) – the maximum size of each minibatch;

	dataset – the dataset to be splitted.

	Returns

	The current minibatch.

Numerical gradient

	
numerical_diff_policy(policy, state, action, eps=1e-06)

	Compute the gradient of a policy in (state, action) numerically.

	Parameters

	
	policy (Policy) – the policy whose gradient has to be returned;

	state (np.ndarray) – the state;

	action (np.ndarray) – the action;

	eps (float, 1e-6) – the value of the perturbation.

	Returns

	The gradient of the provided policy in (state, action)
computed numerically.

	
numerical_diff_dist(dist, theta, eps=1e-06)

	Compute the gradient of a distribution in theta numerically.

	Parameters

	
	dist (Distribution) – the distribution whose gradient has to be returned;

	theta (np.ndarray) – the parametrization where to compute the gradient;

	eps (float, 1e-6) – the value of the perturbation.

	Returns

	The gradient of the provided distribution theta computed
numerically.

	
numerical_diff_function(function, params, eps=1e-06)

	Compute the gradient of a function in theta numerically.

	Parameters

	
	function – a function whose gradient has to be returned;

	params – parameter vector w.r.t. we need to compute the gradient;

	eps (float, 1e-6) – the value of the perturbation.

	Returns

	The numerical gradient of the function computed w.r.t. parameters
params.

Parameters

	
class Parameter(value, min_value=None, max_value=None, size=(1,))

	Bases: mushroom_rl.core.serialization.Serializable

This class implements function to manage parameters, such as learning rate.
It also allows to have a single parameter for each state of state-action
tuple.

	
__init__(value, min_value=None, max_value=None, size=(1,))

	Constructor.

	Parameters

	
	value (float) – initial value of the parameter;

	min_value (float, None) – minimum value that the parameter can reach
when decreasing;

	max_value (float, None) – maximum value that the parameter can reach
when increasing;

	size (tuple, (1,)) – shape of the matrix of parameters; this shape
can be used to have a single parameter for each state or
state-action tuple.

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
_compute(*idx, **kwargs)

	
	Returns

	The value of the parameter in the provided index.

	
update(*idx, **kwargs)

	Updates the number of visit of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter whose number of visits has to be
updated.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
initial_value

	The initial value of the parameters.

	Type

	Returns

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
class LinearParameter(value, threshold_value, n, size=(1,))

	Bases: mushroom_rl.utils.parameters.Parameter

This class implements a linearly changing parameter according to the number
of times it has been used.

	
__init__(value, threshold_value, n, size=(1,))

	Constructor.

	Parameters

	
	value (float) – initial value of the parameter;

	min_value (float, None) – minimum value that the parameter can reach
when decreasing;

	max_value (float, None) – maximum value that the parameter can reach
when increasing;

	size (tuple, (1,)) – shape of the matrix of parameters; this shape
can be used to have a single parameter for each state or
state-action tuple.

	
_compute(*idx, **kwargs)

	Returns:
The value of the parameter in the provided index.

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
initial_value

	The initial value of the parameters.

	Type

	Returns

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
update(*idx, **kwargs)

	Updates the number of visit of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter whose number of visits has to be
updated.

	
class ExponentialParameter(value, exp=1.0, min_value=None, max_value=None, size=(1,))

	Bases: mushroom_rl.utils.parameters.Parameter

This class implements a exponentially changing parameter according to the
number of times it has been used.

	
__init__(value, exp=1.0, min_value=None, max_value=None, size=(1,))

	Constructor.

	Parameters

	
	value (float) – initial value of the parameter;

	min_value (float, None) – minimum value that the parameter can reach
when decreasing;

	max_value (float, None) – maximum value that the parameter can reach
when increasing;

	size (tuple, (1,)) – shape of the matrix of parameters; this shape
can be used to have a single parameter for each state or
state-action tuple.

	
_compute(*idx, **kwargs)

	Returns:
The value of the parameter in the provided index.

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
initial_value

	The initial value of the parameters.

	Type

	Returns

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
update(*idx, **kwargs)

	Updates the number of visit of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter whose number of visits has to be
updated.

Replay memory

	
class ReplayMemory(initial_size, max_size)

	Bases: mushroom_rl.core.serialization.Serializable

This class implements function to manage a replay memory as the one used in
“Human-Level Control Through Deep Reinforcement Learning” by Mnih V. et al..

	
__init__(initial_size, max_size)

	Constructor.

	Parameters

	
	initial_size (int) – initial number of elements in the replay memory;

	max_size (int) – maximum number of elements that the replay memory
can contain.

	
add(dataset, n_steps_return=1, gamma=1.0)

	Add elements to the replay memory.

	Parameters

	
	dataset (list) – list of elements to add to the replay memory;

	n_steps_return (int, 1) – number of steps to consider for computing n-step return;

	gamma (float, 1.) – discount factor for n-step return.

	
get(n_samples)

	Returns the provided number of states from the replay memory.
:param n_samples: the number of samples to return.
:type n_samples: int

	Returns

	The requested number of samples.

	
reset()

	Reset the replay memory.

	
initialized

	Whether the replay memory has reached the number of elements that
allows it to be used.

	Type

	Returns

	
size

	The number of elements contained in the replay memory.

	Type

	Returns

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
class SumTree(max_size)

	Bases: object

This class implements a sum tree data structure.
This is used, for instance, by PrioritizedReplayMemory.

	
__init__(max_size)

	Constructor.

	Parameters

	max_size (int) – maximum size of the tree.

	
add(dataset, priority, n_steps_return, gamma)

	Add elements to the tree.

	Parameters

	
	dataset (list) – list of elements to add to the tree;

	priority (np.ndarray) – priority of each sample in the dataset;

	n_steps_return (int) – number of steps to consider for computing n-step return;

	gamma (float) – discount factor for n-step return.

	
get(s)

	Returns the provided number of states from the replay memory.

	Parameters

	s (float) – the value of the samples to return.

	Returns

	The requested sample.

	
update(idx, priorities)

	Update the priority of the sample at the provided index in the dataset.

	Parameters

	
	idx (np.ndarray) – indexes of the transitions in the dataset;

	priorities (np.ndarray) – priorities of the transitions.

	
size

	The current size of the tree.

	Type

	Returns

	
max_p

	The maximum priority among the ones in the tree.

	Type

	Returns

	
total_p

	The sum of the priorities in the tree, i.e. the value of the root
node.

	Type

	Returns

	
class PrioritizedReplayMemory(initial_size, max_size, alpha, beta, epsilon=0.01)

	Bases: mushroom_rl.core.serialization.Serializable

This class implements function to manage a prioritized replay memory as the
one used in “Prioritized Experience Replay” by Schaul et al., 2015.

	
__init__(initial_size, max_size, alpha, beta, epsilon=0.01)

	Constructor.

	Parameters

	
	initial_size (int) – initial number of elements in the replay
memory;

	max_size (int) – maximum number of elements that the replay memory
can contain;

	alpha (float) – prioritization coefficient;

	beta ([float, Parameter]) – importance sampling coefficient;

	epsilon (float, 01) – small value to avoid zero probabilities.

	
add(dataset, p, n_steps_return=1, gamma=1.0)

	Add elements to the replay memory.

	Parameters

	
	dataset (list) – list of elements to add to the replay memory;

	p (np.ndarray) – priority of each sample in the dataset.

	n_steps_return (int, 1) – number of steps to consider for computing n-step return;

	gamma (float, 1.) – discount factor for n-step return.

	
get(n_samples)

	Returns the provided number of states from the replay memory.

	Parameters

	n_samples (int) – the number of samples to return.

	Returns

	The requested number of samples.

	
update(error, idx)

	Update the priority of the sample at the provided index in the dataset.

	Parameters

	
	error (np.ndarray) – errors to consider to compute the priorities;

	idx (np.ndarray) – indexes of the transitions in the dataset.

	
initialized

	Whether the replay memory has reached the number of elements that
allows it to be used.

	Type

	Returns

	
max_priority

	The maximum value of priority inside the replay memory.

	Type

	Returns

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

Spaces

	
class Box(low, high, shape=None)

	Bases: mushroom_rl.core.serialization.Serializable

This class implements functions to manage continuous states and action
spaces. It is similar to the Box class in gym.spaces.box.

	
__init__(low, high, shape=None)

	Constructor.

	Parameters

	
	low ([float, np.ndarray]) – the minimum value of each dimension of
the space. If a scalar value is provided, this value is
considered as the minimum one for each dimension. If a
np.ndarray is provided, each i-th element is considered the
minimum value of the i-th dimension;

	high ([float, np.ndarray]) – the maximum value of dimensions of the
space. If a scalar value is provided, this value is considered
as the maximum one for each dimension. If a np.ndarray is
provided, each i-th element is considered the maximum value
of the i-th dimension;

	shape (np.ndarray, None) – the dimension of the space. Must match
the shape of low and high, if they are np.ndarray.

	
low

	The minimum value of each dimension of the space.

	Type

	Returns

	
high

	The maximum value of each dimension of the space.

	Type

	Returns

	
shape

	The dimensions of the space.

	Type

	Returns

	
class Discrete(n)

	Bases: mushroom_rl.core.serialization.Serializable

This class implements functions to manage discrete states and action
spaces. It is similar to the Discrete class in gym.spaces.discrete.

	
__init__(n)

	Constructor.

	Parameters

	n (int) – the number of values of the space.

	
size

	The number of elements of the space.

	Type

	Returns

	
shape

	The shape of the space that is always (1,).

	Type

	Returns

Table

	
class Table(shape, initial_value=0.0, dtype=None)

	Bases: mushroom_rl.core.serialization.Serializable

Table regressor. Used for discrete state and action spaces.

	
__init__(shape, initial_value=0.0, dtype=None)

	Constructor.

	Parameters

	
	shape (tuple) – the shape of the tabular regressor.

	initial_value (float, 0.) – the initial value for each entry of the
tabular regressor.

	dtype ([int, float], None) – the dtype of the table array.

	
fit(x, y)

	
	Parameters

	
	x (int) – index of the table to be filled;

	y (float) – value to fill in the table.

	
predict(*z)

	Predict the output of the table given an input.

	Parameters

	
	*z (list) – list of input of the model. If the table is a Q-table,

	list may contain states or states and actions depending (this) – on whether the call requires to predict all q-values or only
one q-value corresponding to the provided action;

	Returns

	The table prediction.

	
n_actions

	The number of actions considered by the table.

	Type

	Returns

	
shape

	The shape of the table.

	Type

	Returns

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
class EnsembleTable(n_models, shape, **params)

	Bases: mushroom_rl.approximators._implementations.ensemble.Ensemble

This class implements functions to manage table ensembles.

	
__init__(n_models, shape, **params)

	Constructor.

	Parameters

	
	n_models (int) – number of models in the ensemble;

	shape (np.ndarray) – shape of each table in the ensemble.

	**params – parameters dictionary to create each regressor.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
fit(*z, idx=None, **fit_params)

	Fit the idx-th model of the ensemble if idx is provided, every
model otherwise.

	Parameters

	
	*z – a list containing the inputs to use to predict with each
regressor of the ensemble;

	idx (int, None) – index of the model to fit;

	**fit_params – other params.

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
model

	The list of the models in the ensemble.

	Type

	Returns

	
predict(*z, idx=None, prediction=None, compute_variance=False, **predict_params)

	Predict.

	Parameters

	
	*z – a list containing the inputs to use to predict with each
regressor of the ensemble;

	idx (int, None) – index of the model to use for prediction;

	prediction (str, None) – the type of prediction to make. When
provided, it overrides the prediction class attribute;

	compute_variance (bool, False) – whether to compute the variance
of the prediction or not;

	**predict_params – other parameters used by the predict method
the regressor.

	Returns

	The predictions of the model.

	
reset()

	Reset the model parameters.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

Torch

	
set_weights(parameters, weights, use_cuda)

	Function used to set the value of a set of torch parameters given a
vector of values.

	Parameters

	
	parameters (list) – list of parameters to be considered;

	weights (numpy.ndarray) – array of the new values for
the parameters;

	use_cuda (bool) – whether the parameters are cuda tensors or not;

	
get_weights(parameters)

	Function used to get the value of a set of torch parameters as
a single vector of values.

	Parameters

	parameters (list) – list of parameters to be considered.

	Returns

	A numpy vector consisting of all the values of the vectors.

	
zero_grad(parameters)

	Function used to set to zero the value of the gradient of a set
of torch parameters.

	Parameters

	parameters (list) – list of parameters to be considered.

	
get_gradient(params)

	Function used to get the value of the gradient of a set of
torch parameters.

	Parameters

	parameters (list) – list of parameters to be considered.

	
to_float_tensor(x, use_cuda=False)

	Function used to convert a numpy array to a float torch tensor.

	Parameters

	
	x (np.ndarray) – numpy array to be converted as torch tensor;

	use_cuda (bool) – whether to build a cuda tensors or not.

	Returns

	A float tensor build from the values contained in the input array.

	
to_int_tensor(x, use_cuda=False)

	Function used to convert a numpy array to a float torch tensor.

	Parameters

	
	x (np.ndarray) – numpy array to be converted as torch tensor;

	use_cuda (bool) – whether to build a cuda tensors or not.

	Returns

	A float tensor build from the values contained in the input array.

Value Functions

	
compute_advantage_montecarlo(V, s, ss, r, absorbing, gamma)

	Function to estimate the advantage and new value function target
over a dataset. The value function is estimated using rollouts
(monte carlo estimation).

	Parameters

	
	V (Regressor) – the current value function regressor;

	s (numpy.ndarray) – the set of states in which we want
to evaluate the advantage;

	ss (numpy.ndarray) – the set of next states in which we want
to evaluate the advantage;

	r (numpy.ndarray) – the reward obtained in each transition
from state s to state ss;

	absorbing (numpy.ndarray) – an array of boolean flags indicating
if the reached state is absorbing;

	gamma (float) – the discount factor of the considered problem.

	Returns

	The new estimate for the value function of the next state
and the advantage function.

	
compute_advantage(V, s, ss, r, absorbing, gamma)

	Function to estimate the advantage and new value function target
over a dataset. The value function is estimated using bootstrapping.

	Parameters

	
	V (Regressor) – the current value function regressor;

	s (numpy.ndarray) – the set of states in which we want
to evaluate the advantage;

	ss (numpy.ndarray) – the set of next states in which we want
to evaluate the advantage;

	r (numpy.ndarray) – the reward obtained in each transition
from state s to state ss;

	absorbing (numpy.ndarray) – an array of boolean flags indicating
if the reached state is absorbing;

	gamma (float) – the discount factor of the considered problem.

	Returns

	The new estimate for the value function of the next state
and the advantage function.

	
compute_gae(V, s, ss, r, absorbing, last, gamma, lam)

	Function to compute Generalized Advantage Estimation (GAE)
and new value function target over a dataset.

“High-Dimensional Continuous Control Using Generalized
Advantage Estimation”.
Schulman J. et al.. 2016.

	Parameters

	
	V (Regressor) – the current value function regressor;

	s (numpy.ndarray) – the set of states in which we want
to evaluate the advantage;

	ss (numpy.ndarray) – the set of next states in which we want
to evaluate the advantage;

	r (numpy.ndarray) – the reward obtained in each transition
from state s to state ss;

	absorbing (numpy.ndarray) – an array of boolean flags indicating
if the reached state is absorbing;

	last (numpy.ndarray) – an array of boolean flags indicating
if the reached state is the last of the trajectory;

	gamma (float) – the discount factor of the considered problem;

	lam (float) – the value for the lamba coefficient used by GEA
algorithm.

	Returns

	The new estimate for the value function of the next state
and the estimated generalized advantage.

Variance parameters

	
class VarianceParameter(value, exponential=False, min_value=None, tol=1.0, size=(1,))

	Bases: mushroom_rl.utils.parameters.Parameter

Abstract class to implement variance-dependent parameters. A target
parameter is expected.

	
__init__(value, exponential=False, min_value=None, tol=1.0, size=(1,))

	Constructor.

	Parameters

	tol (float) – value of the variance of the target variable such that
The parameter value is 0.5.

	
_compute(*idx, **kwargs)

	Returns:
The value of the parameter in the provided index.

	
update(*idx, **kwargs)

	Updates the value of the parameter in the provided index.

	Parameters

	
	*idx (list) – index of the parameter whose number of visits has to be
updated.

	target (float) – Value of the target variable;

	factor (float) – Multiplicative factor for the parameter value, useful
when the parameter depend on another parameter value.

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
initial_value

	The initial value of the parameters.

	Type

	Returns

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
class VarianceIncreasingParameter(value, exponential=False, min_value=None, tol=1.0, size=(1,))

	Bases: mushroom_rl.utils.variance_parameters.VarianceParameter

Class implementing a parameter that increases with the target
variance.

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
__init__(value, exponential=False, min_value=None, tol=1.0, size=(1,))

	Constructor.

	Parameters

	tol (float) – value of the variance of the target variable such that
The parameter value is 0.5.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_compute(*idx, **kwargs)

	Returns:
The value of the parameter in the provided index.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
initial_value

	The initial value of the parameters.

	Type

	Returns

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
update(*idx, **kwargs)

	Updates the value of the parameter in the provided index.

	Parameters

	
	*idx (list) – index of the parameter whose number of visits has to be
updated.

	target (float) – Value of the target variable;

	factor (float) – Multiplicative factor for the parameter value, useful
when the parameter depend on another parameter value.

	
class VarianceDecreasingParameter(value, exponential=False, min_value=None, tol=1.0, size=(1,))

	Bases: mushroom_rl.utils.variance_parameters.VarianceParameter

Class implementing a parameter that decreases with the target
variance.

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
__init__(value, exponential=False, min_value=None, tol=1.0, size=(1,))

	Constructor.

	Parameters

	tol (float) – value of the variance of the target variable such that
The parameter value is 0.5.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_compute(*idx, **kwargs)

	Returns:
The value of the parameter in the provided index.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
initial_value

	The initial value of the parameters.

	Type

	Returns

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
update(*idx, **kwargs)

	Updates the value of the parameter in the provided index.

	Parameters

	
	*idx (list) – index of the parameter whose number of visits has to be
updated.

	target (float) – Value of the target variable;

	factor (float) – Multiplicative factor for the parameter value, useful
when the parameter depend on another parameter value.

	
class WindowedVarianceParameter(value, exponential=False, min_value=None, tol=1.0, window=100, size=(1,))

	Bases: mushroom_rl.utils.parameters.Parameter

Abstract class to implement variance-dependent parameters. A target
parameter is expected. differently from the “Variance Parameter” class
the variance is computed in a window interval.

	
__init__(value, exponential=False, min_value=None, tol=1.0, window=100, size=(1,))

	Constructor.

	Parameters

	
	tol (float) – value of the variance of the target variable such that the
parameter value is 0.5.

	window (int) –

	
_compute(*idx, **kwargs)

	Returns:
The value of the parameter in the provided index.

	
update(*idx, **kwargs)

	Updates the value of the parameter in the provided index.

	Parameters

	
	*idx (list) – index of the parameter whose number of visits has to be
updated.

	target (float) – Value of the target variable;

	factor (float) – Multiplicative factor for the parameter value, useful
when the parameter depend on another parameter value.

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
initial_value

	The initial value of the parameters.

	Type

	Returns

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
class WindowedVarianceIncreasingParameter(value, exponential=False, min_value=None, tol=1.0, window=100, size=(1,))

	Bases: mushroom_rl.utils.variance_parameters.WindowedVarianceParameter

Class implementing a parameter that decreases with the target
variance, where the variance is computed in a fixed length
window.

	
__call__(*idx, **kwargs)

	Update and return the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The updated parameter in the provided index.

	
__init__(value, exponential=False, min_value=None, tol=1.0, window=100, size=(1,))

	Constructor.

	Parameters

	
	tol (float) – value of the variance of the target variable such that the
parameter value is 0.5.

	window (int) –

	
_add_save_attr(**attr_dict)

	Add attributes that should be saved for an agent.
For every attribute, it is necessary to specify the method to be used to
save and load.
Available methods are: numpy, mushroom, torch, json, pickle, primitive
and none. The primitive method can be used to store primitive attributes,
while the none method always skip the attribute, but ensure that it is
initialized to None after the load. The mushroom method can be used with
classes that implement the Serializable interface. All the other methods
use the library named.
If a “!” character is added at the end of the method, the field will be
saved only if full_save is set to True.

	Parameters

	**attr_dict – dictionary of attributes mapped to the method
that should be used to save and load them.

	
_compute(*idx, **kwargs)

	Returns:
The value of the parameter in the provided index.

	
_post_load()

	This method can be overwritten to implement logic that is executed
after the loading of the agent.

	
copy()

	
	Returns

	A deepcopy of the agent.

	
get_value(*idx, **kwargs)

	Return the current value of the parameter in the provided index.

	Parameters

	*idx (list) – index of the parameter to return.

	Returns

	The current value of the parameter in the provided index.

	
initial_value

	The initial value of the parameters.

	Type

	Returns

	
classmethod load(path)

	Load and deserialize the agent from the given location on disk.

	Parameters

	path (Path, string) – Relative or absolute path to the agents save
location.

	Returns

	The loaded agent.

	
save(path, full_save=False)

	Serialize and save the object to the given path on disk.

	Parameters

	
	path (Path, str) – Relative or absolute path to the object save
location;

	full_save (bool) – Flag to specify the amount of data to save for
MushroomRL data structures.

	
save_zip(zip_file, full_save, folder='')

	Serialize and save the agent to the given path on disk.

	Parameters

	
	zip_file (ZipFile) – ZipFile where te object needs to be saved;

	full_save (bool) – flag to specify the amount of data to save for
MushroomRL data structures;

	folder (string, '') – subfolder to be used by the save method.

	
shape

	The shape of the table of parameters.

	Type

	Returns

	
update(*idx, **kwargs)

	Updates the value of the parameter in the provided index.

	Parameters

	
	*idx (list) – index of the parameter whose number of visits has to be
updated.

	target (float) – Value of the target variable;

	factor (float) – Multiplicative factor for the parameter value, useful
when the parameter depend on another parameter value.

Viewer

	
class ImageViewer(size, dt)

	Bases: object

Interface to pygame for visualizing plain images.

	
__init__(size, dt)

	Constructor.

	Parameters

	
	size ([list, tuple]) – size of the displayed image;

	dt (float) – duration of a control step.

	
display(img)

	Display given frame.

	Parameters

	img – image to display.

	
class Viewer(env_width, env_height, width=500, height=500, background=(0, 0, 0))

	Bases: object

Interface to pygame for visualizing mushroom native environments.

	
__init__(env_width, env_height, width=500, height=500, background=(0, 0, 0))

	Constructor.

	Parameters

	
	env_width (int) – The x dimension limit of the desired environment;

	env_height (int) – The y dimension limit of the desired environment;

	width (int, 500) – width of the environment window;

	height (int, 500) – height of the environment window;

	background (tuple, (0, 0, 0)) – background color of the screen.

	
screen

	Property.

	Returns

	The screen created by this viewer.

	
size

	Property.

	Returns

	The size of the screen.

	
line(start, end, color=(255, 255, 255), width=1)

	Draw a line on the screen.

	Parameters

	
	start (np.ndarray) – starting point of the line;

	end (np.ndarray) – end point of the line;

	color (tuple (255, 255, 255)) – color of the line;

	width (int, 1) – width of the line.

	
square(center, angle, edge, color=(255, 255, 255), width=0)

	Draw a square on the screen and apply a roto-translation to it.

	Parameters

	
	center (np.ndarray) – the center of the polygon;

	angle (float) – the rotation to apply to the polygon;

	edge (float) – length of an edge;

	color (tuple, (255, 255, 255)) – the color of the polygon;

	width (int, 0) – the width of the polygon line, 0 to fill the
polygon.

	
polygon(center, angle, points, color=(255, 255, 255), width=0)

	Draw a polygon on the screen and apply a roto-translation to it.

	Parameters

	
	center (np.ndarray) – the center of the polygon;

	angle (float) – the rotation to apply to the polygon;

	points (list) – the points of the polygon w.r.t. the center;

	color (tuple, (255, 255, 255)) – the color of the polygon;

	width (int, 0) – the width of the polygon line, 0 to fill the
polygon.

	
circle(center, radius, color=(255, 255, 255), width=0)

	Draw a circle on the screen.

	Parameters

	
	center (np.ndarray) – the center of the circle;

	radius (float) – the radius of the circle;

	color (tuple, (255, 255, 255)) – the color of the circle;

	width (int, 0) – the width of the circle line, 0 to fill the circle.

	
arrow_head(center, scale, angle, color=(255, 255, 255))

	Draw an harrow head.

	Parameters

	
	center (np.ndarray) – the position of the arrow head;

	scale (float) – scale of the arrow, correspond to the length;

	angle (float) – the angle of rotation of the angle head;

	color (tuple, (255, 255, 255)) – the color of the arrow.

	
force_arrow(center, direction, force, max_force, max_length, color=(255, 255, 255), width=1)

	Draw a force arrow, i.e. an arrow representing a force. The
length of the arrow is directly proportional to the force value.

	Parameters

	
	center (np.ndarray) – the point where the force is applied;

	direction (np.ndarray) – the direction of the force;

	force (float) – the applied force value;

	max_force (float) – the maximum force value;

	max_length (float) – the length to use for the maximum force;

	color (tuple, (255, 255, 255)) – the color of the arrow;

	width (int, 1) – the width of the force arrow.

	
torque_arrow(center, torque, max_torque, max_radius, color=(255, 255, 255), width=1)

	Draw a torque arrow, i.e. a circular arrow representing a torque. The
radius of the arrow is directly proportional to the torque value.

	Parameters

	
	center (np.ndarray) – the point where the torque is applied;

	torque (float) – the applied torque value;

	max_torque (float) – the maximum torque value;

	max_radius (float) – the radius to use for the maximum torque;

	color (tuple, (255, 255, 255)) – the color of the arrow;

	width (int, 1) – the width of the torque arrow.

	
background_image(img)

	Use the given image as background for the window, rescaling it
appropriately.

	Parameters

	img – the image to be used.

	
function(x_s, x_e, f, n_points=100, width=1, color=(255, 255, 255))

	Draw the graph of a function in the image.

	Parameters

	
	x_s (float) – starting x coordinate;

	x_e (float) – final x coordinate;

	f (function) – the function that maps x coorinates into y
coordinates;

	n_points (int, 100) – the number of segments used to approximate the
function to draw;

	width (int, 1) – thw width of the line drawn;

	color (tuple, (255,255,255)) – the color of the line.

	
display(s)

	Display current frame and initialize the next frame to the background
color.

	Parameters

	s – time to wait in visualization.

	
close()

	Close the viewer, destroy the window.

How to make a simple experiment

The main purpose of MushroomRL is to simplify the scripting of RL experiments. A
standard example of a script to run an experiment in MushroomRL, consists of:

	an initial part where the setting of the experiment are specified;

	a middle part where the experiment is run;

	a final part where operations like evaluation, plot and save can be done.

A RL experiment consists of:

	a MDP;

	an agent;

	a core.

A MDP is the problem to be solved by the agent. It contains the function to move
the agent in the environment according to the provided action.
The MDP can be simply created with:

import numpy as np
from sklearn.ensemble import ExtraTreesRegressor

from mushroom_rl.algorithms.value import FQI
from mushroom_rl.core import Core
from mushroom_rl.environments import CarOnHill
from mushroom_rl.policy import EpsGreedy
from mushroom_rl.utils.dataset import compute_J
from mushroom_rl.utils.parameters import Parameter

mdp = CarOnHill()

A MushroomRL agent is the algorithm that is run to learn in the MDP. It consists
of a policy approximator and of the methods to improve the policy during the
learning. It also contains the features to extract in the case of MDP with continuous
state and action spaces. An agent can be defined this way:

Policy
epsilon = Parameter(value=1.)
pi = EpsGreedy(epsilon=epsilon)

Approximator
approximator_params = dict(input_shape=mdp.info.observation_space.shape,
 n_actions=mdp.info.action_space.n,
 n_estimators=50,
 min_samples_split=5,
 min_samples_leaf=2)
approximator = ExtraTreesRegressor

Agent
agent = FQI(mdp.info, pi, approximator, n_iterations=20,
 approximator_params=approximator_params)

This piece of code creates the policy followed by the agent (e.g. \(\varepsilon\)-greedy)
with \(\varepsilon = 1\). Then, the policy approximator is created specifying the
parameters to create it and the class (in this case, the ExtraTreesRegressor class
of scikit-learn is used). Eventually, the agent is created calling the algorithm
class and providing the approximator and the policy, together with parameters used
by the algorithm.

To run the experiment, the core module has to be used. This module requires
the agent and the MDP object and contains the function to learn in the MDP and
evaluate the learned policy. It can be created with:

core = Core(agent, mdp)

Once the core has been created, the agent can be trained collecting a dataset and
fitting the policy:

core.learn(n_episodes=1000, n_episodes_per_fit=1000)

In this case, the agent’s policy is fitted only once, after that 1000 episodes
have been collected. This is a common practice in batch RL algorithms such as
FQI where, initially, samples are randomly collected and then the policy is fitted
using the whole dataset of collected samples.

Eventually, some operations to evaluate the learned policy can be done.
This way the user can, for instance, compute the performance of the agent
through the collected rewards during an evaluation run.
Fixing \(\varepsilon = 0\), the greedy policy is applied starting from the
provided initial states, then the average cumulative discounted reward is returned.

pi.set_epsilon(Parameter(0.))
initial_state = np.array([[-.5, 0.]])
dataset = core.evaluate(initial_states=initial_state)

print(compute_J(dataset, gamma=mdp.info.gamma))

How to make an advanced experiment

Continuous MDPs are a challenging class of problems to solve in RL. In these
problems, a tabular regressor is not enough to approximate the Q-function, since
there are an infinite number of states/actions. The solution to solve them is to
use a function approximator (e.g. neural network) fed with the raw values
of states and actions. In the case a linear approximator is used, it is
convenient to enlarge the input space with the space of non-linear features
extracted from the raw values. This way, the linear approximator is often able
to solve the MDPs, despite its simplicity. Many RL algorithms rely on the use of
a linear approximator to solve a MDP, therefore the use of features is very
important.
This tutorial shows how to solve a continuous MDP in MushroomRL using an
algorithm that requires the use of a linear approximator.

Initially, the MDP and the policy are created:

import numpy as np

from mushroom_rl.algorithms.value import SARSALambdaContinuous
from mushroom_rl.approximators.parametric import LinearApproximator
from mushroom_rl.core import Core
from mushroom_rl.features import Features
from mushroom_rl.features.tiles import Tiles
from mushroom_rl.policy import EpsGreedy
from mushroom_rl.utils.callbacks import CollectDataset
from mushroom_rl.utils.parameters import Parameter
from mushroom_rl.environments import Gym

MDP
mdp = Gym(name='MountainCar-v0', horizon=np.inf, gamma=1.)

Policy
epsilon = Parameter(value=0.)
pi = EpsGreedy(epsilon=epsilon)

This is an environment created with the MushroomRL interface to the OpenAI Gym
library. Each environment offered by OpenAI Gym can be created this way simply
providing the corresponding id in the name parameter, except for the Atari
that are managed by a separate class.
After the creation of the MDP, the tiles features are created:

n_tilings = 10
tilings = Tiles.generate(n_tilings, [10, 10],
 mdp.info.observation_space.low,
 mdp.info.observation_space.high)
features = Features(tilings=tilings)

approximator_params = dict(input_shape=(features.size,),
 output_shape=(mdp.info.action_space.n,),
 n_actions=mdp.info.action_space.n)

In this example, we use sparse coding by means of tiles features. The
generate method generates n_tilings grids of 10x10 tilings evenly spaced
(the way the tilings are created is explained in “Reinforcement Learning: An Introduction”,
Sutton & Barto, 1998). Eventually, the grid is passed to the Features
factory method that returns the features class.

MushroomRL offers other type of features such a radial basis functions and
polynomial features. The former have also a faster implementation written in
Tensorflow that can be used transparently.

Then, the agent is created as usual, but this time passing the feature to it.
It is important to notice that the learning rate is divided by the number of
tilings for the correctness of the update (see “Reinforcement Learning: An Introduction”,
Sutton & Barto, 1998 for details). After that, the learning is run as usual:

learning_rate = Parameter(.1 / n_tilings)

agent = SARSALambdaContinuous(mdp.info, pi, LinearApproximator,
 approximator_params=approximator_params,
 learning_rate=learning_rate,
 lambda_coeff=.9, features=features)

Algorithm
collect_dataset = CollectDataset()
callbacks = [collect_dataset]
core = Core(agent, mdp, callbacks_fit=callbacks)

Train
core.learn(n_episodes=100, n_steps_per_fit=1)

To visualize the learned policy the rendering method of OpenAI Gym is used. To
activate the rendering in the environments that supports it, it is necessary to
set render=True.

core.evaluate(n_episodes=1, render=True)

How to create a regressor

MushroomRL offers a high-level interface to build function regressors. Indeed, it
transparently manages regressors for generic functions and Q-function regressors.
The user should not care about the low-level implementation of these regressors and
should only use the Regressor interface. This interface creates a Q-function regressor
or a GenericRegressor depending on whether the n_actions parameter is provided
to the constructor or not.

Usage of the Regressor interface

	When the action space of RL problems is finite and the adopted approach is value-based,

	we want to compute the Q-function of each action. In MushroomRL, this is possible using:

	a Q-function regressor with a different approximator for each action (ActionRegressor);

	a single Q-function regressor with a different output for each action (QRegressor).

The QRegressor is suggested when the number of discrete actions is high, due to
memory reasons.

The user can create create a QRegressor or an ActionRegressor, setting
the output_shape parameter of the Regressor interface. If it is set to (1,),
an ActionRegressor is created; otherwise if it is set to the number of discrete actions,
a QRegressor is created.

Example

Initially, the MDP, the policy and the features are created:

import numpy as np

from mushroom_rl.algorithms.value import SARSALambdaContinuous
from mushroom_rl.approximators.parametric import LinearApproximator
from mushroom_rl.core import Core
from mushroom_rl.environments import *
from mushroom_rl.features import Features
from mushroom_rl.features.tiles import Tiles
from mushroom_rl.policy import EpsGreedy
from mushroom_rl.utils.callbacks import CollectDataset
from mushroom_rl.utils.parameters import Parameter

MDP
mdp = Gym(name='MountainCar-v0', horizon=np.inf, gamma=1.)

Policy
epsilon = Parameter(value=0.)
pi = EpsGreedy(epsilon=epsilon)

Q-function approximator
n_tilings = 10
tilings = Tiles.generate(n_tilings, [10, 10],
 mdp.info.observation_space.low,
 mdp.info.observation_space.high)
features = Features(tilings=tilings)

Agent
learning_rate = Parameter(.1 / n_tilings)

The following snippet, sets the output shape of the regressor to the number of
actions, creating a QRegressor:

approximator_params = dict(input_shape=(features.size,),
 output_shape=(mdp.info.action_space.n,),
 n_actions=mdp.info.action_space.n)

If you prefer to use an ActionRegressor, simply set the number of actions to (1,):

approximator_params = dict(input_shape=(features.size,),
 output_shape=(1,),
 n_actions=mdp.info.action_space.n)

Then, the rest of the code fits the approximator and runs the evaluation rendering
the behaviour of the agent:

agent = SARSALambdaContinuous(mdp.info, pi, LinearApproximator,
 approximator_params=approximator_params,
 learning_rate=learning_rate,
 lambda_coeff= .9, features=features)

Algorithm
collect_dataset = CollectDataset()
callbacks = [collect_dataset]
core = Core(agent, mdp, callbacks_fit=callbacks)

Train
core.learn(n_episodes=100, n_steps_per_fit=1)

Evaluate
core.evaluate(n_episodes=1, render=True)

Generic regressor

Whenever the n_actions parameter is not provided, the Regressor interface creates
a GenericRegressor. This regressor can be used for general purposes and it is
more flexible to be used. It is commonly used in policy search algorithms.

Example

Create a dataset of points distributed on a line with random gaussian noise.

import numpy as np
from matplotlib import pyplot as plt

from mushroom_rl.approximators import Regressor
from mushroom_rl.approximators.parametric import LinearApproximator

x = np.arange(10).reshape(-1, 1)

intercept = 10
noise = np.random.randn(10, 1) * 1
y = 2 * x + intercept + noise

To fit the intercept, polynomial features of degree 1 are created by hand:

phi = np.concatenate((np.ones(10).reshape(-1, 1), x), axis=1)

The regressor is then created and fit (note that n_actions is not provided):

regressor = Regressor(LinearApproximator,
 input_shape=(2,),
 output_shape=(1,))

regressor.fit(phi, y)

Eventually, the approximated function of the regressor is plotted together with
the target points. Moreover, the weights and the gradient in point 5 of the linear approximator
are printed.

print('Weights: ' + str(regressor.get_weights()))
print('Gradient: ' + str(regressor.diff(np.array([[5.]]))))

plt.scatter(x, y)
plt.plot(x, regressor.predict(phi))
plt.show()

How to make a deep RL experiment

The usual script to run a deep RL experiment does not significantly differ from
the one for a shallow RL experiment.
This tutorial shows how to solve Atari [https://gym.openai.com/envs/#atari/]
games in MushroomRL using DQN, and how to solve
MuJoCo [https://github.com/deepmind/dm_control/] tasks using DDPG. This
tutorial will not explain some technicalities that are already described in the
previous tutorials, and will only briefly explain how to run deep RL experiments.
Be sure to read the previous tutorials before starting this one.

Solving Atari with DQN

This script runs the experiment to solve the Atari Breakout game as described in
the DQN paper “Human-level control through deep reinforcement learning”, Mnih V. et
al., 2015). We start creating the neural network to learn the action-value
function:

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F

from mushroom_rl.algorithms.value import DQN
from mushroom_rl.approximators.parametric import TorchApproximator
from mushroom_rl.core import Core
from mushroom_rl.environments import Atari
from mushroom_rl.policy import EpsGreedy
from mushroom_rl.utils.dataset import compute_metrics
from mushroom_rl.utils.parameters import LinearParameter, Parameter

class Network(nn.Module):
 n_features = 512

 def __init__(self, input_shape, output_shape, **kwargs):
 super().__init__()

 n_input = input_shape[0]
 n_output = output_shape[0]

 self._h1 = nn.Conv2d(n_input, 32, kernel_size=8, stride=4)
 self._h2 = nn.Conv2d(32, 64, kernel_size=4, stride=2)
 self._h3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)
 self._h4 = nn.Linear(3136, self.n_features)
 self._h5 = nn.Linear(self.n_features, n_output)

 nn.init.xavier_uniform_(self._h1.weight,
 gain=nn.init.calculate_gain('relu'))
 nn.init.xavier_uniform_(self._h2.weight,
 gain=nn.init.calculate_gain('relu'))
 nn.init.xavier_uniform_(self._h3.weight,
 gain=nn.init.calculate_gain('relu'))
 nn.init.xavier_uniform_(self._h4.weight,
 gain=nn.init.calculate_gain('relu'))
 nn.init.xavier_uniform_(self._h5.weight,
 gain=nn.init.calculate_gain('linear'))

 def forward(self, state, action=None):
 h = F.relu(self._h1(state.float() / 255.))
 h = F.relu(self._h2(h))
 h = F.relu(self._h3(h))
 h = F.relu(self._h4(h.view(-1, 3136)))
 q = self._h5(h)

 if action is None:
 return q
 else:
 q_acted = torch.squeeze(q.gather(1, action.long()))

 return q_acted

Note that the forward function may return all the action-values of state,
or only the one for the provided action. This network will be used later in
the script.
Now, we define useful functions, set some hyperparameters, and create the mdp
and the policy pi:

def print_epoch(epoch):
 print('##')
 print('Epoch: ', epoch)
 print('--')

def get_stats(dataset):
 score = compute_metrics(dataset)
 print(('min_reward: %f, max_reward: %f, mean_reward: %f,'
 ' games_completed: %d' % score))

 return score

scores = list()

optimizer = dict()
optimizer['class'] = optim.Adam
optimizer['params'] = dict(lr=.00025)

Settings
width = 84
height = 84
history_length = 4
train_frequency = 4
evaluation_frequency = 250000
target_update_frequency = 10000
initial_replay_size = 50000
max_replay_size = 500000
test_samples = 125000
max_steps = 50000000

MDP
mdp = Atari('BreakoutDeterministic-v4', width, height, ends_at_life=True,
 history_length=history_length, max_no_op_actions=30)

Policy
epsilon = LinearParameter(value=1.,
 threshold_value=.1,
 n=1000000)
epsilon_test = Parameter(value=.05)
epsilon_random = Parameter(value=1)
pi = EpsGreedy(epsilon=epsilon_random)

Differently from the literature, we use Adam as the optimizer.

Then, the approximator:

Approximator
input_shape = (history_length, height, width)
approximator_params = dict(
 network=Network,
 input_shape=input_shape,
 output_shape=(mdp.info.action_space.n,),
 n_actions=mdp.info.action_space.n,
 n_features=Network.n_features,
 optimizer=optimizer,
 loss=F.smooth_l1_loss
)

approximator = TorchApproximator

Finally, the agent and the core:

Agent
algorithm_params = dict(
 batch_size=32,
 target_update_frequency=target_update_frequency // train_frequency,
 replay_memory=None,
 initial_replay_size=initial_replay_size,
 max_replay_size=max_replay_size
)

agent = DQN(mdp.info, pi, approximator,
 approximator_params=approximator_params,
 **algorithm_params)

Algorithm
core = Core(agent, mdp)

Eventually, the learning loop is performed. As done in literature, learning and
evaluation steps are alternated:

RUN

Fill replay memory with random dataset
print_epoch(0)
core.learn(n_steps=initial_replay_size,
 n_steps_per_fit=initial_replay_size)

Evaluate initial policy
pi.set_epsilon(epsilon_test)
mdp.set_episode_end(False)
dataset = core.evaluate(n_steps=test_samples)
scores.append(get_stats(dataset))

for n_epoch in range(1, max_steps // evaluation_frequency + 1):
 print_epoch(n_epoch)
 print('- Learning:')
 # learning step
 pi.set_epsilon(epsilon)
 mdp.set_episode_end(True)
 core.learn(n_steps=evaluation_frequency,
 n_steps_per_fit=train_frequency)

 print('- Evaluation:')
 # evaluation step
 pi.set_epsilon(epsilon_test)
 mdp.set_episode_end(False)
 dataset = core.evaluate(n_steps=test_samples)
 scores.append(get_stats(dataset))

Solving MuJoCo with DDPG

This script runs the experiment to solve the Walker-Stand MuJoCo task, as
implemented in MuJoCo [https://github.com/deepmind/dm_control/]. As with DQN,
we start creating the neural networks. For DDPG, we need an actor and a critic
network:

import numpy as np

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F

from mushroom_rl.algorithms.actor_critic import DDPG
from mushroom_rl.core import Core
from mushroom_rl.environments.dm_control_env import DMControl
from mushroom_rl.policy import OrnsteinUhlenbeckPolicy
from mushroom_rl.utils.dataset import compute_J

class CriticNetwork(nn.Module):
 def __init__(self, input_shape, output_shape, n_features, **kwargs):
 super().__init__()

 n_input = input_shape[-1]
 n_output = output_shape[0]

 self._h1 = nn.Linear(n_input, n_features)
 self._h2 = nn.Linear(n_features, n_features)
 self._h3 = nn.Linear(n_features, n_output)

 nn.init.xavier_uniform_(self._h1.weight,
 gain=nn.init.calculate_gain('relu'))
 nn.init.xavier_uniform_(self._h2.weight,
 gain=nn.init.calculate_gain('relu'))
 nn.init.xavier_uniform_(self._h3.weight,
 gain=nn.init.calculate_gain('linear'))

 def forward(self, state, action):
 state_action = torch.cat((state.float(), action.float()), dim=1)
 features1 = F.relu(self._h1(state_action))
 features2 = F.relu(self._h2(features1))
 q = self._h3(features2)

 return torch.squeeze(q)

class ActorNetwork(nn.Module):
 def __init__(self, input_shape, output_shape, n_features, **kwargs):
 super(ActorNetwork, self).__init__()

 n_input = input_shape[-1]
 n_output = output_shape[0]

 self._h1 = nn.Linear(n_input, n_features)
 self._h2 = nn.Linear(n_features, n_features)
 self._h3 = nn.Linear(n_features, n_output)

 nn.init.xavier_uniform_(self._h1.weight,
 gain=nn.init.calculate_gain('relu'))
 nn.init.xavier_uniform_(self._h2.weight,
 gain=nn.init.calculate_gain('relu'))
 nn.init.xavier_uniform_(self._h3.weight,
 gain=nn.init.calculate_gain('linear'))

 def forward(self, state):
 features1 = F.relu(self._h1(torch.squeeze(state, 1).float()))
 features2 = F.relu(self._h2(features1))
 a = self._h3(features2)

 return a

We create the mdp, the policy, and set some hyperparameters:

MDP
horizon = 500
gamma = 0.99
gamma_eval = 1.
mdp = DMControl('walker', 'stand', horizon, gamma)

Policy
policy_class = OrnsteinUhlenbeckPolicy
policy_params = dict(sigma=np.ones(1) * .2, theta=.15, dt=1e-2)

Settings
initial_replay_size = 500
max_replay_size = 5000
batch_size = 200
n_features = 80
tau = .001

Note that the policy is not instatiated in the script, since in DDPG the
instatiation is done inside the algorithm constructor.

We create the actor and the critic approximators:

Approximator
actor_input_shape = mdp.info.observation_space.shape
actor_params = dict(network=ActorNetwork,
 n_features=n_features,
 input_shape=actor_input_shape,
 output_shape=mdp.info.action_space.shape)

actor_optimizer = {'class': optim.Adam,
 'params': {'lr': 1e-5}}

critic_input_shape = (actor_input_shape[0] + mdp.info.action_space.shape[0],)
critic_params = dict(network=CriticNetwork,
 optimizer={'class': optim.Adam,
 'params': {'lr': 1e-3}},
 loss=F.mse_loss,
 n_features=n_features,
 input_shape=critic_input_shape,
 output_shape=(1,))

Finally, we create the agent and the core:

Agent
agent = DDPG(mdp.info, policy_class, policy_params,
 actor_params, actor_optimizer, critic_params,
 batch_size, initial_replay_size, max_replay_size,
 tau)

Algorithm
core = Core(agent, mdp)

As in DQN, we alternate learning and evaluation steps:

Fill the replay memory with random samples
core.learn(n_steps=initial_replay_size, n_steps_per_fit=initial_replay_size)

RUN
n_epochs = 40
n_steps = 1000
n_steps_test = 2000

dataset = core.evaluate(n_steps=n_steps_test, render=False)
J = compute_J(dataset, gamma_eval)
print('Epoch: 0')
print('J: ', np.mean(J))

for n in range(n_epochs):
 print('Epoch: ', n+1)
 core.learn(n_steps=n_steps, n_steps_per_fit=1)
 dataset = core.evaluate(n_steps=n_steps_test, render=False)

How to use the Logger

Here we explain in detail the usage of the MushroomRL Logger class.
This class can be used as a standardized console logger and can also log on disk
Numpy arrays or a mushroom agent, using the appropriate logging folder.

Constructing the Logger

To initialize the logger we can simply choose a log directory and an experiment name:

from mushroom_rl.core import Logger

Create a logger object, creating a log folder
logger = Logger('tutorial', results_dir='/tmp/logs',
 log_console=True)

This will create the experiment folder named ‘tutorial’ inside the base folder ‘/tmp/logs’.
The logger creates all the necessary directories if they do not exist.
If results_dir is not specified, the log will create a ‘./logs’ base directory.
By setting log_console to true, the logger will store the console output in a ‘.log’ text file inside the experiment folder, with the same name.
If the file already exists, the logger will append the new logged lines.

If you do not want the logger to create any directory e.g., to only use the log for the console
output, you can force the results_dir parameter to None:

Create a logger object, without creating the log folder
logger_no_folder = Logger('tutorial_no_folder', results_dir=None)

Logging message on the console

The most basic functionality of the Logger is to output text messages on the standard output.
Our logger uses the standard Python logger, and it follows a similar set of functionalities:

Write a line of hashtags, to be used as a separator
logger.strong_line()

Print an info message
logger.debug('This is a debug message')

Print an info message
logger.info('This is an info message')

Print a warning
logger.warning('This is a warning message')

Print an error
logger.error('This is an error message')

Print a critical error message
logger.critical('This is a critical error')

Print a line of dashes, to be used as a (weak) separator
logger.weak_line()

We can also log to terminal the exceptions. Using this method, instead of a raw print, you can manage
correctly the exception output without breaking any tqdm progress bar (see below), and the exception
text will be saved in the console log files (if console logging is active).

Exception logging
try:
 raise RuntimeError('A runtime exception occurred')
except RuntimeError as e:
 logger.error('Exception catched, here\'s the stack trace:')
 logger.exception(e)

logger.weak_line()

Logging a Reinforcement Learning experiment

Our Logger includes some functionalities to log RL experiment data easily.
To demonstrate this, we will set up a simple RL experiment, using Q-Learning in the simple chain enviornment.

Logging learning process
from mushroom_rl.core import Core
from mushroom_rl.environments.generators import generate_simple_chain
from mushroom_rl.policy import EpsGreedy
from mushroom_rl.algorithms.value import QLearning
from mushroom_rl.utils.parameters import Parameter
from mushroom_rl.utils.dataset import compute_J
from tqdm import trange
from time import sleep
import numpy as np

Setup simple learning environment
mdp = generate_simple_chain(state_n=5, goal_states=[2], prob=.8, rew=1, gamma=.9)
epsilon = Parameter(value=.15)
pi = EpsGreedy(epsilon=epsilon)
agent = QLearning(mdp.info, pi, learning_rate=Parameter(value=.2))
core = Core(agent, mdp)
epochs = 10

We skip the details of this RL experiment, as they are not relevant to the current tutorial.
You can have a deeper look at RL experiments with MushroomRL in other tutorials.

It is important to notice that we use tqdm progress bar, as our logger is integrated with
this package, and can print log messages while the progress bar is showing progress, without
disrupting the progress bar and the terminal.

We first print the learning performances before the learning, using the epoch_info method:

Initial policy Evaluation
logger.info('Experiment started')
logger.strong_line()

dataset = core.evaluate(n_steps=100)
J = np.mean(compute_J(dataset, mdp.info.gamma)) # Discounted returns
R = np.mean(compute_J(dataset)) # Undiscounted returns

logger.epoch_info(0, J=J, R=R, any_label='any value')

Notice that this method can print any possible label passed as a function parameter, so it’s not
restricted to J, R, or other predefined metrics.

We now consider the learning loop:

for i in trange(epochs):
 # Here some learning
 core.learn(n_steps=100, n_steps_per_fit=1)
 sleep(0.5)
 dataset = core.evaluate(n_steps=100)
 sleep(0.5)
 J = np.mean(compute_J(dataset, mdp.info.gamma)) # Discounted returns
 R = np.mean(compute_J(dataset)) # Undiscounted returns

 # Here logging epoch results to the console
 logger.epoch_info(i+1, J=J, R=R)

 # Logging the data in J.npy and E.npy
 logger.log_numpy(J=J, R=R)

 # Logging the best agent according to the best J
 logger.log_best_agent(agent, J)

Here we make use of both the epoch_info method to log the data in the console output and the methods
log_numpy and log_best_agent to log the learning progress.

The log_numpy method can take an arbitrary value (primitive or a NumPy array) and log into a single NumPy array (or matrix). Again a set of arbitrary keywords can be used to save data into different filenames.
If the seed parameter of the constructor of the Logger class is specified, the filename will include
a postfix with the seed. This is useful when multiple runs of the same experiment are executed.

The log_best_agent saves the current agent, into the ‘agent-best.msh’ file. However, the current agent will
be stored on disk only if it improves w.r.t. the previously logged one.

We conclude the learning experiment by logging the final agent and the last dataset:

Logging the last agent
logger.log_agent(agent)

Log the last dataset
logger.log_dataset(dataset)

logger.info('Experiment terminated')

Advanced Logger topics

The logger can be also used to continue the learning from a previously existing run, without overwriting the
stored results values. This can be done by specifying the append flag in the logger’s constructor.

Loggers can also continue from previous logs results
del logger # Delete previous logger
new_logger = Logger('tutorial', results_dir='/tmp/logs',
 log_console=True, append=True)

add infinite at the end of J.npy
new_logger.log_numpy(J=np.inf)
new_logger.info('Tutorial ends here')

Finally, another functionality of the logger is to activate some specific text output from some algorithms.
This can be done by calling the agent’s set_logger method:

agent.set_logger(logger)

Currently, only the PPO and the TRPO algorithms provide additional output, by describing some
learning metrics after every fit.

How to use the Environment interface

Here we explain in detail the usage of the MushroomRL Environment interface.
First, we explain how to use the registration interface. The registration enables the construction of environments
from string specification. Then we construct a toy environment to show how it is possible to add new MushroomRL
environments.

Old-school enviroment creation

In MushroomRL, environments are simply class objects that extend the environment interface.
To create an environment, you can simply call its constructor.
You can build the Segway environment as follows:

from mushroom_rl.environments import Segway

env = Segway()

Some environments may have a constructor which is too low level, and you may want to generate a vanilla version of it
using as few parameters as possible.
An example is the Linear Quadratic Regulator (LQR) environment, which requires a set of matrices to define the linear
dynamics and the quadratic cost function. To provide an easier interface, the generate class method is exposed. To
generate a simple 3-dimensional LQR problem, with Identity transition and action matrices, and a trivial
quadratic cost function, you can use:

from mushroom_rl.environments import LQR

env = LQR.generate(dimensions=3)

See the documentation of LQR.generate to know all the available parameters and effects.

Environment registration

From version 1.7.0, it is possible to register MushroomRL environments and build the environment by specifying only
the name.

You can list the registered environments as follows:

from mushroom_rl.core import Environment

env_list = Environment.list_registered()
print(env_list)

Every registered environment can be build using the name.
For example, to create the ShipSteering environment you can use:

env = Environment.make('ShipSteering')

To build environments, you may need to pass additional parameters.
An example of this is the Gym environment which wraps most OpenAI Gym environments, except the Atari ones, which
uses the Atari environment to implement proper preprocessing.

If you want to build the Pendulum-v0 gym environment you need to pass the environment name as a parameter:

env = Environment.make('Gym', 'Pendulum-v0')

However, for environments that are interfaces to other libraries such as Gym, Atari or DMControl a notation
with a dot separator is supported. For example to create the pendulum you can also use:

env = Environment.make('Gym.Pendulum-v0')

Or, to create the hopper environment with hop task from DeepMind control suite you can use:

env = Environment.make('DMControl.hopper.hop')

If an environment implements the generate method, it will be used to build the environment instead of the constructor.
As the generate method is higher-level interface w.r.t. the constructor, it will require less parameters.

To generate the 3-dimensional LQR problem mentioned in the previous section you can use:

env = Environment.generate('LQR', dimensions=3)

Finally, you can register new environments. Suppose that you have created the environment class MyNewEnv, which
extends the base Environment class. You can register the environment as follows:

MyNewEnv.register()

You can put this line of code after the class declaration, or in the __init__.py file of your library.
If you do so, the first time you import the file, you will register the environment. Notice that this registration is
not saved on disk, thus, you need to register the environment every time the Python interpreter is executed.

Creating a new environment

We show you an example of how to construct a MushroomRL environment.
We create a simple room environment, with discrete actions, continuous state space, and mildly stochastic dynamics.
The objective is to move the agent from any point of the room towards the goal point. The agent takes a penalty at every
step equal to the distance to the objective. When the agent reaches the goal the episode ends. The agent can move in the
room by using one of the 4 discrete actions, North, South, West, East.

First of all, we import all the required classes: NumPy for working with the array, the Environment interface and
the MDPInfo structure, which contains the basic information about the Environment.

Given that we are implementing a simple visualization function, we import also the viewer class, which is a Pygame
wrapper, that can be used to render easily RL environments.

import numpy as np

from mushroom_rl.core import Environment, MDPInfo
from mushroom_rl.utils.spaces import Box, Discrete

from mushroom_rl.utils.viewer import Viewer

Now, we can create the environment class.

We first extend the environment class and create the constructor:

class RoomToyEnv(Environment):
 def __init__(self, size=5., goal=[2.5, 2.5], goal_radius=0.6):

 # Save important environment information
 self._size = size
 self._goal = np.array(goal)
 self._goal_radius = goal_radius

 # Create the action space.
 action_space = Discrete(4) # 4 actions: N, S, W, E

 # Create the observation space. It's a 2D box of dimension (size x size).
 # You can also specify low and high array, if every component has different limits
 shape = (2,)
 observation_space = Box(0, size, shape)

 # Create the MDPInfo structure, needed by the environment interface
 mdp_info = MDPInfo(observation_space, action_space, gamma=0.99, horizon=100)

 super().__init__(mdp_info)

 # Create a state class variable to store the current state
 self._state = None

 # Create the viewer
 self._viewer = Viewer(size, size)

It’s important to notice that the superclass constructor needs the information stored in the MDPInfo structure.
This structure contains the action and observation space, the discount factor gamma, and the horizon.
The horizon is used to cut the trajectories when they are too long. When the horizon is reached the episode is
terminated, however, the state might not be absorbing. The absorbing state flag is explicitly set in the environment step
function.
Also, notice that the Environment superclass has no notion of the environment state, so we need to store it by
ourselves. That’s why we create the self._state variable and we initialize it to None.
Other environment information such as the goal position and area is stored into class variables.

Now we implement the reset function. This function is called at the beginning of every episode. It’s possible to force
the initial state. For this reason, we have to manage two scenarios: when the initial state is given and when it is set
to None. If the initial state is not given, we sample randomly among the valid states.

 def reset(self, state=None):

 if state is None:
 # Generate randomly a state inside the state space, but not inside the goal
 self._state = np.random.rand(2) * self._size

 # Check if it's inside the goal radius and repeat the sample if necessary
 while np.linalg.norm(self._state - self._goal) < self._goal_radius:
 self._state = np.random.rand(2) * self._size
 else:
 # If an initial state is provided, set it and return, after checking it's valid.
 assert np.all(state < self._size) and np.all(state > 0)
 assert np.linalg.norm(state - self._goal) > self._goal_radius
 self._state = state

 # Return the current state
 return self._state

Now it’s time to implement the step function, that specifies the transition function of the environment, computes the
reward, and signal absorbing states, i.e. states where every action keeps you in the same state, achieving 0 reward.
When reaching the absorbing state we cut the trajectory, as their value function is always 0, and no further exploration
is needed.

 def step(self, action):
 # convert the action in a N, S, W, E movement
 movement = np.zeros(2)
 if action == 0:
 movement[1] += 0.1
 elif action == 1:
 movement[1] -= 0.1
 elif action == 2:
 movement[0] -= 0.1
 elif action == 3:
 movement[0] += 0.1
 else:
 assert ValueError('The environment has only 4 actions')

 # Apply the movement with some noise:
 self._state += movement + np.random.randn(2)*0.05

 # Clip the state space inside the boundaries.
 low = self.info.observation_space.low
 high = self.info.observation_space.high

 self._state = Environment._bound(self._state, low, high)

 # Compute distance form goal
 goal_distance = np.linalg.norm(self._state - self._goal)

 # Compute the reward as distance penalty from goal
 reward = -goal_distance

 # Set the absorbing flag if goal is reached
 absorbing = goal_distance < self._goal_radius

 # Return all the information + empty dictionary (used to pass additional information)
 return self._state, reward, absorbing, {}

Finally, we implement the render function using our Viewer class. This class wraps Pygame to provide an easy
visualization tool for 2D Reinforcement Learning algorithms. The viewer class has many functionalities, but here we
simply draw two circles representing the agent and the goal area:

 def render(self):
 # Draw a red circle for the agent
 self._viewer.circle(self._state, 0.1, color=(255, 0, 0))

 # Draw a green circle for the goal
 self._viewer.circle(self._goal, self._goal_radius, color=(0, 255, 0))

 # Display the image for 0.1 seconds
 self._viewer.display(0.1)

For more information about the viewer, refer to the class documentation.

To conclude our environment, it’s also possible to register it as specified in the previous section of this tutorial:

Register the class
RoomToyEnv.register()

Learning in the toy environment

Now that we have created our environment, we try to solve it using Reinforcement Learning. The following code uses the
True Online SARSA-Lambda algorithm, exploiting a tiles approximator.

We first import all necessary classes and utilities, then we construct the environment (we set the seed for
reproducibility).

if __name__ == '__main__':
 from mushroom_rl.core import Core
 from mushroom_rl.algorithms.value import TrueOnlineSARSALambda
 from mushroom_rl.policy import EpsGreedy
 from mushroom_rl.features import Features
 from mushroom_rl.features.tiles import Tiles
 from mushroom_rl.utils.parameters import Parameter
 from mushroom_rl.utils.dataset import compute_J

 # Set the seed
 np.random.seed(1)

 # Create the toy environment with default parameters
 env = Environment.make('RoomToyEnv')

We now proceed then to create the agent policy, which is a linear policy using tiles features, similar
to the one used by the Mountain Car experiment from R. Sutton book.

 # Using an epsilon-greedy policy
 epsilon = Parameter(value=0.1)
 pi = EpsGreedy(epsilon=epsilon)

 # Creating a simple agent using linear approximator with tiles
 n_tilings = 5
 tilings = Tiles.generate(n_tilings, [10, 10],
 env.info.observation_space.low,
 env.info.observation_space.high)
 features = Features(tilings=tilings)

 learning_rate = Parameter(.1 / n_tilings)

 approximator_params = dict(input_shape=(features.size,),
 output_shape=(env.info.action_space.n,),
 n_actions=env.info.action_space.n)

 agent = TrueOnlineSARSALambda(env.info, pi,
 approximator_params=approximator_params,
 features=features,
 learning_rate=learning_rate,
 lambda_coeff=.9)

Finally, using the Core class we set up an RL experiment. We first evaluate the initial policy for three episodes on the
environment. Then we learn the task using the algorithm build above for 20000 steps.
In the end, we evaluate the learned policy for 3 more episodes.

 # Reinforcement learning experiment
 core = Core(agent, env)

 # Visualize initial policy for 3 episodes
 dataset = core.evaluate(n_episodes=3, render=True)

 # Print the average objective value before learning
 J = np.mean(compute_J(dataset, env.info.gamma))
 print(f'Objective function before learning: {J}')

 # Train
 core.learn(n_steps=20000, n_steps_per_fit=1, render=False)

 # Visualize results for 3 episodes
 dataset = core.evaluate(n_episodes=3, render=True)

 # Print the average objective value after learning
 J = np.mean(compute_J(dataset, env.info.gamma))
 print(f'Objective function after learning: {J}')

How to use the Serializable interface

In this tutorial, we explain in detail the Serializable interface. We first explain how to use classes
implementing the Serializable interface, and then we provide a small example of how to implement the
Serializable interface on a custom class to serialize the object properly on disk.

The Mushroom RL save format (extension .msh) is nothing else than a zip file, containing some information (stored into
the config file) to load the object. This information can be accessed easily and you can try to recover the information
by hand from corrupted files.

Note that it is always possible to serialize Python objects with the pickle library. However, the MushroomRL
serialization interface use a native format, is easy to use, and is more robust to code changes, as it doesn’t serialize
the entire class, but only the data. Furthermore, it is possible to avoid the serialization of some class variables,
such as shared objects or big arrays, e.g. replay memories.

Save and load from disk

Many MushroomRL objects implement the serialization interface. All the algorithms, policies, approximators, and parameters
implemented in MushroomRL use the Serializable interface.

As an example, we save a MushroomRL Parameter on disk. We create the parameter and then we serialize it to disk
using the save method of the serializable class:

from mushroom_rl.utils.parameters import Parameter

parameter = Parameter(1.0)
print('Initial parameter value: ', parameter())
parameter.save('parameter.msh')

This code creates a parameters.msh file in the working directory.

You can also specify a directory:

from pathlib import Path
base_dir = Path('tmp')
file_name = base_dir / 'parameter.msh'
parameter.save(file_name)

This create a tmp folder (if it doesn’t exist) in the working directory and save the parameters.msh file
inside it.

Now, we can set another value for our parameter variable:

parameter = Parameter(0.5)
print('Modified parameter value: ', parameter())

Finally, we load the previously stored parameter to go back to the previous state using the load method:

parameter = Parameter.load('parameter.msh')
print('Loaded parameter value: ', parameter())

You can also call the load directly from the Serializable class:

from mushroom_rl.core import Serializable
parameter = Serializable.load('parameter.msh')
print('Loaded parameter value (Serializable): ', parameter())

The same approach can be used to save an agent, a policy, or an approximator.

Full Save

The save method has an optional full_save flag, which by default is set to False. In the previous parameter
example, this flag does not affect. However, when saving a Reinforcement Learning algorithm or other complex
objects, setting this flag to true forces the agent to save data structures that are normally excluded from a save
file, such as the replay memory in DQN.

This implementation choice avoids large save files for agents with huge data structures, and allows to avoid storing
duplicated information (such as the Q function of in epsilon greedy policy, when saving the algorithm).
The full_save instead, enforces a complete serialization of the agent, retaining all the information.

Implementing the Serializable interface

We give a simple example of how to implement the Serializable interface in MushroomRL for a custom class.
We use almost all possible data persistence types implemented.

We start the example by importing the serializable interface, the torch library, the NumPy library, and the MushroomRL
Parameter class.

from mushroom_rl.core import Serializable

import torch
import numpy as np
from mushroom_rl.utils.parameters import Parameter

While it is required to import the Serializable interface, the other three imports are only required by this example, as
they are used to create variables of such type.

Now we define a class implementing the Serializable interface. In this case, we call it TestClass.
The constructor can be divided into two parts: first, we build a set of variables of different types.
Then, we call the superclass constructor, i.e. the constructor of Serializable. Finally, we specify which variables
we want to be saved in the MushroomRL file passing keywords to the self._add_save_attr method.

class TestClass(Serializable):
 def __init__(self, value):
 # Create some different types of variables

 self._primitive_variable = value # Primitive python variable
 self._numpy_vector = np.array([1, 2, 3]*value) # Numpy array
 self._dictionary = dict(some='random', keywords=2, fill='the dictionary') # A dictionary

 # Building a torch object
 data_array = np.ones(3)*value
 data_tensor = torch.from_numpy(data_array)
 self._torch_object = torch.nn.Parameter(data_tensor)

 # Some variables that implement the Serializable interface
 self._mushroom_parameter = Parameter(2.0*value)
 self._list_of_objects = [Parameter(i) for i in range(value)] # This is a list!

 # A variable that is not important e.g. a buffer
 self.not_important = np.zeros(10000)

 # A variable that contains a reference to another variable
 self._list_reference = [self._dictionary]

 # Superclass constructor
 super().__init__()

 # Here we specify how to save each component
 self._add_save_attr(
 _primitive_variable='primitive',
 _numpy_vector='numpy',
 _dictionary='pickle',
 _torch_object='torch',
 _mushroom_parameter='mushroom',
 # List of mushroom objects can also be saved with the 'mushroom' mode
 _list_of_objects='mushroom',
 # The '!' is to specify that we save the variable only if full_save is True
 not_important='numpy!',
)

Some remarks about the self._add_save_attr method: the keyword name must be the name of the variable we want to
store in the file, while the associated value is the method we want to use to store such variables.

The available methods are:

	primitive, to store any primitive type. This includes lists and dictionaries of primitive values.

	mushroom, to store any type implementing the Serializable interface. Also, lists of serializable objects are supported.

	numpy, to store NumPy arrays.

	torch, to store any torch object.

	pickle, to store any Python object that cannot be stored with the above methods.

	json, can be used if you need a textual output version, that is easy to read.

Another important aspect to remember is that any method can be ended by a ‘!’, to specify that the field must be
serialized if and only if the full_save flag is set to true.

To conclude the implementation of our Serializable interface, we might want to implement also the
self._post_load method. This method is executed after all the data specified in self._add_save_attr has been
loaded into the class. It can be useful to set the variables not saved in the file to a default variable.

 def _post_load(self):
 if self.not_important is None:
 self.not_important = np.zeros(10000)

 self._list_reference = [self._dictionary]

In this scenario, we have to set the self.not_important variable to his default value, but only if it’s None, i.e.
has not been loaded from the file, because the file didn’t contain it.
Also, we set the `` self._list_primitive`` variable to maintain its original semantic, i.e. to contain a
reference to the content of the self._dictionary variable.

To test the implementation, we write a function to write in easy to read way the content of the class:

def print_variables(obj):
 for label, var in vars(obj).items():
 if label != '_save_attributes':
 if isinstance(var, Parameter):
 print(f'{label}: Parameter({var()})')
 elif isinstance(var, list) and isinstance(var[0], Parameter):
 new_list = [f'Parameter({item()})' for item in var]
 print(f'{label}: {new_list}')
 else:
 print(label, ': ', var)

Finally, we test the save functionality with the following code:

if __name__ == '__main__':
 # Create test object and print its variables
 test_object = TestClass(1)
 print('###')
 print('The test object contains the following:')
 print('---')
 print_variables(test_object)

 # Changing the buffer
 test_object.not_important[0] = 1

 # Save the object on disk
 test_object.save('test.msh')

 # Create another test object
 test_object = TestClass(2)
 print('###')
 print('After overwriting the test object:')
 print('---')
 print_variables(test_object)

 # Changing the buffer again
 test_object.not_important[0] = 1

 # Save the other test object, this time remember buffer
 test_object.save('test_full.msh', full_save=True)

 # Load first test object and print its variables
 print('###')
 test_object = TestClass.load('test.msh')
 print('Loading previous test object:')
 print('---')
 print_variables(test_object)

 # Load second test object and print its variables
 print('###')
 test_object = TestClass.load('test_full.msh')
 print('Loading previous test object:')
 print('---')
 print_variables(test_object)

We can see that the content of self.not_important is stored only if the full_save flag is set to true.

The last remark is that the Serializable interface works also in presence of inheritance. If you extend a
serializable class, you only need to add the new attributes defined by the child class.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mushroom_rl	

 	
 	
 mushroom_rl.algorithms.actor_critic.classic_actor_critic	

 	
 	
 mushroom_rl.algorithms.actor_critic.deep_actor_critic	

 	
 	
 mushroom_rl.algorithms.policy_search.black_box_optimization	

 	
 	
 mushroom_rl.algorithms.policy_search.policy_gradient	

 	
 	
 mushroom_rl.algorithms.value.batch_td	

 	
 	
 mushroom_rl.algorithms.value.dqn	

 	
 	
 mushroom_rl.algorithms.value.td	

 	
 	
 mushroom_rl.approximators.parametric.linear	

 	
 	
 mushroom_rl.approximators.parametric.torch_approximator	

 	
 	
 mushroom_rl.approximators.regressor	

 	
 	
 mushroom_rl.core.agent	

 	
 	
 mushroom_rl.core.core	

 	
 	
 mushroom_rl.core.environment	

 	
 	
 mushroom_rl.core.logger	

 	
 	
 mushroom_rl.core.serialization	

 	
 	
 mushroom_rl.distributions.distribution	

 	
 	
 mushroom_rl.distributions.gaussian	

 	
 	
 mushroom_rl.environments.atari	

 	
 	
 mushroom_rl.environments.car_on_hill	

 	
 	
 mushroom_rl.environments.cart_pole	

 	
 	
 mushroom_rl.environments.dm_control_env	

 	
 	
 mushroom_rl.environments.finite_mdp	

 	
 	
 mushroom_rl.environments.generators.grid_world	

 	
 	
 mushroom_rl.environments.generators.simple_chain	

 	
 	
 mushroom_rl.environments.generators.taxi	

 	
 	
 mushroom_rl.environments.grid_world	

 	
 	
 mushroom_rl.environments.gym_env	

 	
 	
 mushroom_rl.environments.inverted_pendulum	

 	
 	
 mushroom_rl.environments.lqr	

 	
 	
 mushroom_rl.environments.mujoco	

 	
 	
 mushroom_rl.environments.puddle_world	

 	
 	
 mushroom_rl.environments.segway	

 	
 	
 mushroom_rl.environments.ship_steering	

 	
 	
 mushroom_rl.features._implementations.features_implementation	

 	
 	
 mushroom_rl.features.basis.fourier	

 	
 	
 mushroom_rl.features.basis.gaussian_rbf	

 	
 	
 mushroom_rl.features.basis.polynomial	

 	
 	
 mushroom_rl.features.features	

 	
 	
 mushroom_rl.features.tensors.gaussian_tensor	

 	
 	
 mushroom_rl.features.tiles.tiles	

 	
 	
 mushroom_rl.features.tiles.voronoi	

 	
 	
 mushroom_rl.policy.deterministic_policy	

 	
 	
 mushroom_rl.policy.gaussian_policy	

 	
 	
 mushroom_rl.policy.noise_policy	

 	
 	
 mushroom_rl.policy.policy	

 	
 	
 mushroom_rl.policy.td_policy	

 	
 	
 mushroom_rl.policy.torch_policy	

 	
 	
 mushroom_rl.solvers.car_on_hill	

 	
 	
 mushroom_rl.solvers.dynamic_programming	

 	
 	
 mushroom_rl.solvers.lqr	

 	
 	
 mushroom_rl.utils.angles	

 	
 	
 mushroom_rl.utils.callbacks	

 	
 	
 mushroom_rl.utils.dataset	

 	
 	
 mushroom_rl.utils.eligibility_trace	

 	
 	
 mushroom_rl.utils.features	

 	
 	
 mushroom_rl.utils.folder	

 	
 	
 mushroom_rl.utils.frames	

 	
 	
 mushroom_rl.utils.minibatches	

 	
 	
 mushroom_rl.utils.numerical_gradient	

 	
 	
 mushroom_rl.utils.parameters	

 	
 	
 mushroom_rl.utils.replay_memory	

 	
 	
 mushroom_rl.utils.spaces	

 	
 	
 mushroom_rl.utils.table	

 	
 	
 mushroom_rl.utils.torch	

 	
 	
 mushroom_rl.utils.value_functions	

 	
 	
 mushroom_rl.utils.variance_parameters	

 	
 	
 mushroom_rl.utils.viewer	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	__call__() (AbstractGaussianPolicy method)

 	(Boltzmann method)

 	(BoltzmannTorchPolicy method)

 	(Callback method)

 	(ClippedGaussianPolicy method)

 	(CollectDataset method)

 	(CollectMaxQ method)

 	(CollectParameters method)

 	(CollectQ method)

 	(DeterministicPolicy method)

 	(DiagonalGaussianPolicy method)

 	(Distribution method)

 	(EpsGreedy method)

 	(ExponentialParameter method)

 	(FourierBasis method)

 	(GaussianCholeskyDistribution method)

 	(GaussianDiagonalDistribution method)

 	(GaussianDistribution method)

 	(GaussianPolicy method)

 	(GaussianRBF method)

 	(GaussianTorchPolicy method)

 	(LinearParameter method)

 	(Mellowmax method)

 	(Mellowmax.MellowmaxParameter method)

 	(OrnsteinUhlenbeckPolicy method)

 	(Parameter method)

 	(ParametricPolicy method)

 	(Policy method)

 	(PolynomialBasis method)

 	(Regressor method)

 	(StateLogStdGaussianPolicy method)

 	(StateStdGaussianPolicy method)

 	(TDPolicy method)

 	(Tiles method)

 	(TorchPolicy method)

 	(VarianceDecreasingParameter method)

 	(VarianceIncreasingParameter method)

 	(VarianceParameter method)

 	(VoronoiTiles method)

 	(WindowedVarianceIncreasingParameter method)

 	(WindowedVarianceParameter method)

 	__init__ (AbstractGaussianPolicy attribute)

 	(Distribution attribute)

 	(ParametricPolicy attribute)

 	(Policy attribute)

 	(Serializable attribute)

 	__init__() (A2C method)

 	(AbstractDQN method)

 	(AbstractGridWorld method)

 	(AccumulatingTrace method)

 	(Agent method)

 	(Atari method)

 	(AveragedDQN method)

 	(Boltzmann method)

 	(BoltzmannTorchPolicy method)

 	(BoostedFQI method)

 	(Box method)

 	(COPDAC_Q method)

 	(Callback method)

 	(CarOnHill method)

 	(CartPole method)

 	(CategoricalDQN method)

 	(ClippedGaussianPolicy method)

 	(CollectMaxQ method)

 	(CollectParameters method)

 	(CollectQ method)

 	(ConsoleLogger method)

 	(ConstrainedREPS method)

 	(Core method)

 	(DDPG method)

 	(DMControl method)

 	(DQN method)

 	(DataLogger method)

 	(DeepAC method)

 	(DeterministicPolicy method)

 	(DiagonalGaussianPolicy method)

 	(Discrete method)

 	(DoubleDQN method)

 	(DoubleFQI method)

 	(DoubleQLearning method)

 	(DuelingDQN method)

 	(EnsembleTable method)

 	(Environment method)

 	(EpsGreedy method)

 	(ExpectedSARSA method)

 	(ExponentialParameter method)

 	(FQI method)

 	(FiniteMDP method)

 	(FourierBasis method)

 	(GPOMDP method)

 	(GaussianCholeskyDistribution method)

 	(GaussianDiagonalDistribution method)

 	(GaussianDistribution method)

 	(GaussianPolicy method)

 	(GaussianRBF method)

 	(GaussianRBFTensor method)

 	(GaussianTorchPolicy method)

 	(GridWorld method)

 	(GridWorldVanHasselt method)

 	(Gym method)

 	(ImageViewer method)

 	(InvertedPendulum method)

 	(LQR method)

 	(LSPI method)

 	(LazyFrames method)

 	(LinearApproximator method)

 	(LinearParameter method)

 	(Logger method)

 	(MDPInfo method)

 	(MaxAndSkip method)

 	(MaxminDQN method)

 	(MaxminQLearning method)

 	(Mellowmax method)

 	(Mellowmax.MellowmaxParameter method)

 	(MuJoCo method)

 	(NoisyDQN method)

 	(OrnsteinUhlenbeckPolicy method)

 	(PGPE method)

 	(PPO method)

 	(Parameter method)

 	(PolynomialBasis method)

 	(PrioritizedReplayMemory method)

 	(PuddleWorld method)

 	(QLambda method)

 	(QLearning method)

 	(REINFORCE method)

 	(REPS method)

 	(RLearning method)

 	(RQLearning method)

 	(RWR method)

 	(Rainbow method)

 	(Regressor method)

 	(ReplacingTrace method)

 	(ReplayMemory method)

 	(SAC method)

 	(SARSA method)

 	(SARSALambda method)

 	(SARSALambdaContinuous method)

 	(Segway method)

 	(ShipSteering method)

 	(SpeedyQLearning method)

 	(StateLogStdGaussianPolicy method)

 	(StateStdGaussianPolicy method)

 	(StochasticAC method)

 	(StochasticAC_AVG method)

 	(SumTree method)

 	(TD3 method)

 	(TDPolicy method)

 	(TRPO method)

 	(Table method)

 	(Tiles method)

 	(TorchApproximator method)

 	(TorchPolicy method)

 	(TrueOnlineSARSALambda method)

 	(VarianceDecreasingParameter method)

 	(VarianceIncreasingParameter method)

 	(VarianceParameter method)

 	(Viewer method)

 	(VoronoiTiles method)

 	(WeightedQLearning method)

 	(WindowedVarianceIncreasingParameter method)

 	(WindowedVarianceParameter method)

 	(eNAC method)

 	_add_save_attr() (A2C method)

 	(AbstractDQN method)

 	(AbstractGaussianPolicy method)

 	(AccumulatingTrace method)

 	(Agent method)

 	(AveragedDQN method)

 	(Boltzmann method)

 	(BoltzmannTorchPolicy method)

 	(BoostedFQI method)

 	(COPDAC_Q method)

 	(CategoricalDQN method)

 	(ClippedGaussianPolicy method)

 	(ConstrainedREPS method)

 	(DDPG method)

 	(DQN method)

 	(DeepAC method)

 	(DeterministicPolicy method)

 	(DiagonalGaussianPolicy method)

 	(Distribution method)

 	(DoubleDQN method)

 	(DoubleFQI method)

 	(DoubleQLearning method)

 	(DuelingDQN method)

 	(EnsembleTable method)

 	(EpsGreedy method)

 	(ExpectedSARSA method)

 	(ExponentialParameter method)

 	(FQI method)

 	(GPOMDP method)

 	(GaussianCholeskyDistribution method)

 	(GaussianDiagonalDistribution method)

 	(GaussianDistribution method)

 	(GaussianPolicy method)

 	(GaussianTorchPolicy method)

 	(LSPI method)

 	(LinearApproximator method)

 	(LinearParameter method)

 	(MDPInfo method)

 	(MaxminDQN method)

 	(MaxminQLearning method)

 	(Mellowmax method)

 	(Mellowmax.MellowmaxParameter method)

 	(NoisyDQN method)

 	(OrnsteinUhlenbeckPolicy method)

 	(PGPE method)

 	(PPO method)

 	(Parameter method)

 	(ParametricPolicy method)

 	(Policy method)

 	(PrioritizedReplayMemory method)

 	(QLambda method)

 	(QLearning method)

 	(REINFORCE method)

 	(REPS method)

 	(RLearning method)

 	(RQLearning method)

 	(RWR method)

 	(Rainbow method)

 	(Regressor method)

 	(ReplacingTrace method)

 	(ReplayMemory method)

 	(SAC method)

 	(SARSA method)

 	(SARSALambda method)

 	(SARSALambdaContinuous method)

 	(Serializable method)

 	(SpeedyQLearning method)

 	(StateLogStdGaussianPolicy method)

 	(StateStdGaussianPolicy method)

 	(StochasticAC method)

 	(StochasticAC_AVG method)

 	(TD3 method)

 	(TDPolicy method)

 	(TRPO method)

 	(Table method)

 	(TorchApproximator method)

 	(TorchPolicy method)

 	(TrueOnlineSARSALambda method)

 	(VarianceDecreasingParameter method)

 	(VarianceIncreasingParameter method)

 	(VarianceParameter method)

 	(WeightedQLearning method)

 	(WindowedVarianceIncreasingParameter method)

 	(WindowedVarianceParameter method)

 	(eNAC method)

 	
 	_append_folder() (AccumulatingTrace static method)

 	(ReplacingTrace static method)

 	_bound() (AbstractGridWorld static method)

 	(Atari static method)

 	(CarOnHill static method)

 	(CartPole static method)

 	(DMControl static method)

 	(Environment static method)

 	(FiniteMDP static method)

 	(GridWorld static method)

 	(GridWorldVanHasselt static method)

 	(Gym static method)

 	(InvertedPendulum static method)

 	(LQR static method)

 	(MuJoCo static method)

 	(PuddleWorld static method)

 	(Segway static method)

 	(ShipSteering static method)

 	_check_collision() (MuJoCo method)

 	_compute() (ExponentialParameter method)

 	(LinearParameter method)

 	(Mellowmax.MellowmaxParameter method)

 	(Parameter method)

 	(VarianceDecreasingParameter method)

 	(VarianceIncreasingParameter method)

 	(VarianceParameter method)

 	(WindowedVarianceIncreasingParameter method)

 	(WindowedVarianceParameter method)

 	_compute_action() (MuJoCo method)

 	_compute_exponents() (PolynomialBasis static method)

 	_compute_gradient() (eNAC method)

 	(GPOMDP method)

 	(REINFORCE method)

 	_episode_end_update() (eNAC method)

 	(GPOMDP method)

 	(REINFORCE method)

 	_get_collision_force() (MuJoCo method)

 	_get_serialization_method() (AccumulatingTrace static method)

 	(ReplacingTrace static method)

 	_init_update() (eNAC method)

 	(GPOMDP method)

 	(REINFORCE method)

 	_is_absorbing() (MuJoCo method)

 	_load_json() (AccumulatingTrace static method)

 	(ReplacingTrace static method)

 	_load_list() (mushroom_rl.utils.eligibility_trace.AccumulatingTrace class method)

 	(mushroom_rl.utils.eligibility_trace.ReplacingTrace class method)

 	_load_mushroom() (AccumulatingTrace static method)

 	(ReplacingTrace static method)

 	_load_numpy() (AccumulatingTrace static method)

 	(ReplacingTrace static method)

 	_load_pickle() (AccumulatingTrace static method)

 	(ReplacingTrace static method)

 	_load_simulation() (MuJoCo method)

 	_load_torch() (AccumulatingTrace static method)

 	(ReplacingTrace static method)

 	_next_q() (AbstractDQN method)

 	(AveragedDQN method)

 	(CategoricalDQN method)

 	(DDPG method)

 	(DQN method)

 	(DoubleDQN method)

 	(DuelingDQN method)

 	(MaxminDQN method)

 	(NoisyDQN method)

 	(RQLearning method)

 	(Rainbow method)

 	(SAC method)

 	(TD3 method)

 	(WeightedQLearning method)

 	_optimize_actor_parameters() (A2C method)

 	(DDPG method)

 	(DeepAC method)

 	(SAC method)

 	(TD3 method)

 	_parse() (DoubleQLearning static method)

 	(ExpectedSARSA static method)

 	(GPOMDP method)

 	(MaxminQLearning static method)

 	(QLambda static method)

 	(QLearning static method)

 	(REINFORCE method)

 	(RLearning static method)

 	(RQLearning static method)

 	(SARSA static method)

 	(SARSALambda static method)

 	(SARSALambdaContinuous static method)

 	(SpeedyQLearning static method)

 	(TrueOnlineSARSALambda static method)

 	(WeightedQLearning static method)

 	(eNAC method)

 	_post_load() (A2C method)

 	(AbstractDQN method)

 	(AbstractGaussianPolicy method)

 	(AccumulatingTrace method)

 	(Agent method)

 	(AveragedDQN method)

 	(Boltzmann method)

 	(BoltzmannTorchPolicy method)

 	(BoostedFQI method)

 	(COPDAC_Q method)

 	(CategoricalDQN method)

 	(ClippedGaussianPolicy method)

 	(ConstrainedREPS method)

 	(DDPG method)

 	(DQN method)

 	(DeepAC method)

 	(DeterministicPolicy method)

 	(DiagonalGaussianPolicy method)

 	(Distribution method)

 	(DoubleDQN method)

 	(DoubleFQI method)

 	(DoubleQLearning method)

 	(DuelingDQN method)

 	(EnsembleTable method)

 	(EpsGreedy method)

 	(ExpectedSARSA method)

 	(ExponentialParameter method)

 	(FQI method)

 	(GPOMDP method)

 	(GaussianCholeskyDistribution method)

 	(GaussianDiagonalDistribution method)

 	(GaussianDistribution method)

 	(GaussianPolicy method)

 	(GaussianTorchPolicy method)

 	(LSPI method)

 	(LinearApproximator method)

 	(LinearParameter method)

 	(MDPInfo method)

 	(MaxminDQN method)

 	(MaxminQLearning method)

 	(Mellowmax method)

 	(Mellowmax.MellowmaxParameter method)

 	(NoisyDQN method)

 	(OrnsteinUhlenbeckPolicy method)

 	(PGPE method)

 	(PPO method)

 	(Parameter method)

 	(ParametricPolicy method)

 	(Policy method)

 	(PrioritizedReplayMemory method)

 	(QLambda method)

 	(QLearning method)

 	(REINFORCE method)

 	(REPS method)

 	(RLearning method)

 	(RQLearning method)

 	(RWR method)

 	(Rainbow method)

 	(Regressor method)

 	(ReplacingTrace method)

 	(ReplayMemory method)

 	(SAC method)

 	(SARSA method)

 	(SARSALambda method)

 	(SARSALambdaContinuous method)

 	(Serializable method)

 	(SpeedyQLearning method)

 	(StateLogStdGaussianPolicy method)

 	(StateStdGaussianPolicy method)

 	(StochasticAC method)

 	(StochasticAC_AVG method)

 	(TD3 method)

 	(TDPolicy method)

 	(TRPO method)

 	(Table method)

 	(TorchApproximator method)

 	(TorchPolicy method)

 	(TrueOnlineSARSALambda method)

 	(VarianceDecreasingParameter method)

 	(VarianceIncreasingParameter method)

 	(VarianceParameter method)

 	(WeightedQLearning method)

 	(WindowedVarianceIncreasingParameter method)

 	(WindowedVarianceParameter method)

 	(eNAC method)

 	_preprocess() (Core method)

 	_preprocess_action() (MuJoCo method)

 	_read_data() (MuJoCo method)

 	_reward() (MuJoCo method)

 	_save_json() (AccumulatingTrace static method)

 	(ReplacingTrace static method)

 	_save_mushroom() (AccumulatingTrace static method)

 	(ReplacingTrace static method)

 	_save_numpy() (AccumulatingTrace static method)

 	(ReplacingTrace static method)

 	_save_pickle() (AccumulatingTrace static method)

 	(ReplacingTrace static method)

 	_save_torch() (AccumulatingTrace static method)

 	(ReplacingTrace static method)

 	_setup() (MuJoCo method)

 	_simulation_post_step() (MuJoCo method)

 	_simulation_pre_step() (MuJoCo method)

 	_step() (Core method)

 	_step_finalize() (MuJoCo method)

 	_step_init() (MuJoCo method)

 	_step_update() (eNAC method)

 	(GPOMDP method)

 	(REINFORCE method)

 	_update() (ConstrainedREPS method)

 	(DoubleQLearning method)

 	(ExpectedSARSA method)

 	(MaxminQLearning method)

 	(PGPE method)

 	(QLambda method)

 	(QLearning method)

 	(REPS method)

 	(RLearning method)

 	(RQLearning method)

 	(RWR method)

 	(SARSA method)

 	(SARSALambda method)

 	(SARSALambdaContinuous method)

 	(SpeedyQLearning method)

 	(TrueOnlineSARSALambda method)

 	(WeightedQLearning method)

 	_update_parameters() (eNAC method)

 	(GPOMDP method)

 	(REINFORCE method)

 	_update_target() (AbstractDQN method)

 	(AveragedDQN method)

 	(CategoricalDQN method)

 	(DQN method)

 	(DoubleDQN method)

 	(DuelingDQN method)

 	(MaxminDQN method)

 	(NoisyDQN method)

 	(Rainbow method)

 	_write_data() (MuJoCo method)

A

 	
 	A2C (class in mushroom_rl.algorithms.actor_critic.deep_actor_critic)

 	AbstractDQN (class in mushroom_rl.algorithms.value.dqn)

 	AbstractGaussianPolicy (class in mushroom_rl.policy.gaussian_policy)

 	AbstractGridWorld (class in mushroom_rl.environments.grid_world)

 	AccumulatingTrace (class in mushroom_rl.utils.eligibility_trace)

 	add() (PrioritizedReplayMemory method)

 	(ReplayMemory method)

 	(SumTree method)

 	
 	Agent (class in mushroom_rl.core.agent)

 	arrays_as_dataset() (in module mushroom_rl.utils.dataset)

 	arrow_head() (Viewer method)

 	Atari (class in mushroom_rl.environments.atari)

 	AveragedDQN (class in mushroom_rl.algorithms.value.dqn)

B

 	
 	background_image() (Viewer method)

 	bfs() (in module mushroom_rl.solvers.car_on_hill)

 	Boltzmann (class in mushroom_rl.policy.td_policy)

 	
 	BoltzmannTorchPolicy (class in mushroom_rl.policy.torch_policy)

 	BoostedFQI (class in mushroom_rl.algorithms.value.batch_td)

 	Box (class in mushroom_rl.utils.spaces)

C

 	
 	Callback (class in mushroom_rl.utils.callbacks)

 	CarOnHill (class in mushroom_rl.environments.car_on_hill)

 	CartPole (class in mushroom_rl.environments.cart_pole)

 	CategoricalDQN (class in mushroom_rl.algorithms.value.dqn)

 	circle() (Viewer method)

 	clean() (Callback method)

 	ClippedGaussianPolicy (class in mushroom_rl.policy.noise_policy)

 	close() (MaxAndSkip method)

 	(Viewer method)

 	CollectDataset (class in mushroom_rl.utils.callbacks)

 	CollectMaxQ (class in mushroom_rl.utils.callbacks)

 	CollectParameters (class in mushroom_rl.utils.callbacks)

 	CollectQ (class in mushroom_rl.utils.callbacks)

 	compute_advantage() (in module mushroom_rl.utils.value_functions)

 	compute_advantage_montecarlo() (in module mushroom_rl.utils.value_functions)

 	compute_gae() (in module mushroom_rl.utils.value_functions)

 	compute_J() (in module mushroom_rl.utils.dataset)

 	compute_lqr_feedback_gain() (in module mushroom_rl.solvers.lqr)

 	compute_lqr_P() (in module mushroom_rl.solvers.lqr)

 	compute_lqr_Q() (in module mushroom_rl.solvers.lqr)

 	compute_lqr_Q_gaussian_policy() (in module mushroom_rl.solvers.lqr)

 	compute_lqr_Q_gaussian_policy_gradient_K() (in module mushroom_rl.solvers.lqr)

 	compute_lqr_V() (in module mushroom_rl.solvers.lqr)

 	compute_lqr_V_gaussian_policy() (in module mushroom_rl.solvers.lqr)

 	compute_lqr_V_gaussian_policy_gradient_K() (in module mushroom_rl.solvers.lqr)

 	compute_metrics() (in module mushroom_rl.utils.dataset)

 	compute_mu() (in module mushroom_rl.environments.generators.grid_world)

 	(in module mushroom_rl.environments.generators.taxi)

 	compute_probabilities() (in module mushroom_rl.environments.generators.grid_world)

 	(in module mushroom_rl.environments.generators.simple_chain)

 	(in module mushroom_rl.environments.generators.taxi)

 	compute_reward() (in module mushroom_rl.environments.generators.grid_world)

 	(in module mushroom_rl.environments.generators.simple_chain)

 	(in module mushroom_rl.environments.generators.taxi)

 	ConsoleLogger (class in mushroom_rl.core.logger)

 	ConstrainedREPS (class in mushroom_rl.algorithms.policy_search.black_box_optimization)

 	COPDAC_Q (class in mushroom_rl.algorithms.actor_critic.classic_actor_critic)

 	copy() (A2C method)

 	(AbstractDQN method)

 	(AbstractGaussianPolicy method)

 	(AccumulatingTrace method)

 	(Agent method)

 	(AveragedDQN method)

 	(Boltzmann method)

 	(BoltzmannTorchPolicy method)

 	(BoostedFQI method)

 	(COPDAC_Q method)

 	(CategoricalDQN method)

 	(ClippedGaussianPolicy method)

 	(ConstrainedREPS method)

 	(DDPG method)

 	(DQN method)

 	(DeepAC method)

 	(DeterministicPolicy method)

 	(DiagonalGaussianPolicy method)

 	(Distribution method)

 	(DoubleDQN method)

 	(DoubleFQI method)

 	(DoubleQLearning method)

 	(DuelingDQN method)

 	(EnsembleTable method)

 	(EpsGreedy method)

 	(ExpectedSARSA method)

 	(ExponentialParameter method)

 	(FQI method)

 	(GPOMDP method)

 	(GaussianCholeskyDistribution method)

 	(GaussianDiagonalDistribution method)

 	(GaussianDistribution method)

 	(GaussianPolicy method)

 	(GaussianTorchPolicy method)

 	(LSPI method)

 	(LinearApproximator method)

 	(LinearParameter method)

 	(MDPInfo method)

 	(MaxminDQN method)

 	(MaxminQLearning method)

 	(Mellowmax method)

 	(Mellowmax.MellowmaxParameter method)

 	(NoisyDQN method)

 	(OrnsteinUhlenbeckPolicy method)

 	(PGPE method)

 	(PPO method)

 	(Parameter method)

 	(ParametricPolicy method)

 	(Policy method)

 	(PrioritizedReplayMemory method)

 	(QLambda method)

 	(QLearning method)

 	(REINFORCE method)

 	(REPS method)

 	(RLearning method)

 	(RQLearning method)

 	(RWR method)

 	(Rainbow method)

 	(Regressor method)

 	(ReplacingTrace method)

 	(ReplayMemory method)

 	(SAC method)

 	(SARSA method)

 	(SARSALambda method)

 	(SARSALambdaContinuous method)

 	(Serializable method)

 	(SpeedyQLearning method)

 	(StateLogStdGaussianPolicy method)

 	(StateStdGaussianPolicy method)

 	(StochasticAC method)

 	(StochasticAC_AVG method)

 	(TD3 method)

 	(TDPolicy method)

 	(TRPO method)

 	(Table method)

 	(TorchApproximator method)

 	(TorchPolicy method)

 	(TrueOnlineSARSALambda method)

 	(VarianceDecreasingParameter method)

 	(VarianceIncreasingParameter method)

 	(VarianceParameter method)

 	(WeightedQLearning method)

 	(WindowedVarianceIncreasingParameter method)

 	(WindowedVarianceParameter method)

 	(eNAC method)

 	
 	Core (class in mushroom_rl.core.core)

 	critical() (ConsoleLogger method)

 	(Logger method)

D

 	
 	DataLogger (class in mushroom_rl.core.logger)

 	DDPG (class in mushroom_rl.algorithms.actor_critic.deep_actor_critic)

 	debug() (ConsoleLogger method)

 	(Logger method)

 	DeepAC (class in mushroom_rl.algorithms.actor_critic.deep_actor_critic)

 	DeterministicPolicy (class in mushroom_rl.policy.deterministic_policy)

 	DiagonalGaussianPolicy (class in mushroom_rl.policy.gaussian_policy)

 	diff() (AbstractGaussianPolicy method)

 	(ClippedGaussianPolicy method)

 	(DeterministicPolicy method)

 	(DiagonalGaussianPolicy method)

 	(Distribution method)

 	(GaussianCholeskyDistribution method)

 	(GaussianDiagonalDistribution method)

 	(GaussianDistribution method)

 	(GaussianPolicy method)

 	(LinearApproximator method)

 	(OrnsteinUhlenbeckPolicy method)

 	(ParametricPolicy method)

 	(Regressor method)

 	(StateLogStdGaussianPolicy method)

 	(StateStdGaussianPolicy method)

 	(TorchApproximator method)

 	diff_log() (AbstractGaussianPolicy method)

 	(ClippedGaussianPolicy method)

 	(DeterministicPolicy method)

 	(DiagonalGaussianPolicy method)

 	(Distribution method)

 	(GaussianCholeskyDistribution method)

 	(GaussianDiagonalDistribution method)

 	(GaussianDistribution method)

 	(GaussianPolicy method)

 	(OrnsteinUhlenbeckPolicy method)

 	(ParametricPolicy method)

 	(StateLogStdGaussianPolicy method)

 	(StateStdGaussianPolicy method)

 	Discrete (class in mushroom_rl.utils.spaces)

 	display() (ImageViewer method)

 	(Viewer method)

 	Distribution (class in mushroom_rl.distributions.distribution)

 	distribution() (BoltzmannTorchPolicy method)

 	(GaussianTorchPolicy method)

 	(TorchPolicy method)

 	distribution_t() (BoltzmannTorchPolicy method)

 	(GaussianTorchPolicy method)

 	(TorchPolicy method)

 	DMControl (class in mushroom_rl.environments.dm_control_env)

 	DoubleDQN (class in mushroom_rl.algorithms.value.dqn)

 	DoubleFQI (class in mushroom_rl.algorithms.value.batch_td)

 	DoubleQLearning (class in mushroom_rl.algorithms.value.td)

 	DQN (class in mushroom_rl.algorithms.value.dqn)

 	draw_action() (A2C method)

 	(AbstractDQN method)

 	(AbstractGaussianPolicy method)

 	(Agent method)

 	(AveragedDQN method)

 	(Boltzmann method)

 	(BoltzmannTorchPolicy method)

 	(BoostedFQI method)

 	(COPDAC_Q method)

 	(CategoricalDQN method)

 	(ClippedGaussianPolicy method)

 	(ConstrainedREPS method)

 	(DDPG method)

 	(DQN method)

 	(DeepAC method)

 	(DeterministicPolicy method)

 	(DiagonalGaussianPolicy method)

 	(DoubleDQN method)

 	(DoubleFQI method)

 	(DoubleQLearning method)

 	(DuelingDQN method)

 	(EpsGreedy method)

 	(ExpectedSARSA method)

 	(FQI method)

 	(GPOMDP method)

 	(GaussianPolicy method)

 	(GaussianTorchPolicy method)

 	(LSPI method)

 	(MaxminDQN method)

 	(MaxminQLearning method)

 	(Mellowmax method)

 	(NoisyDQN method)

 	(OrnsteinUhlenbeckPolicy method)

 	(PGPE method)

 	(PPO method)

 	(ParametricPolicy method)

 	(Policy method)

 	(QLambda method)

 	(QLearning method)

 	(REINFORCE method)

 	(REPS method)

 	(RLearning method)

 	(RQLearning method)

 	(RWR method)

 	(Rainbow method)

 	(SAC method)

 	(SARSA method)

 	(SARSALambda method)

 	(SARSALambdaContinuous method)

 	(SpeedyQLearning method)

 	(StateLogStdGaussianPolicy method)

 	(StateStdGaussianPolicy method)

 	(StochasticAC method)

 	(StochasticAC_AVG method)

 	(TD3 method)

 	(TDPolicy method)

 	(TRPO method)

 	(TorchPolicy method)

 	(TrueOnlineSARSALambda method)

 	(WeightedQLearning method)

 	(eNAC method)

 	
 	draw_action_t() (BoltzmannTorchPolicy method)

 	(GaussianTorchPolicy method)

 	(TorchPolicy method)

 	DuelingDQN (class in mushroom_rl.algorithms.value.dqn)

E

 	
 	EligibilityTrace() (in module mushroom_rl.utils.eligibility_trace)

 	eNAC (class in mushroom_rl.algorithms.policy_search.policy_gradient)

 	EnsembleTable (class in mushroom_rl.utils.table)

 	entropy() (BoltzmannTorchPolicy method)

 	(Distribution method)

 	(GaussianCholeskyDistribution method)

 	(GaussianDiagonalDistribution method)

 	(GaussianDistribution method)

 	(GaussianTorchPolicy method)

 	(TorchPolicy method)

 	entropy_t() (BoltzmannTorchPolicy method)

 	(GaussianTorchPolicy method)

 	(TorchPolicy method)

 	Environment (class in mushroom_rl.core.environment)

 	episode_start() (A2C method)

 	(AbstractDQN method)

 	(Agent method)

 	(AveragedDQN method)

 	(BoostedFQI method)

 	(COPDAC_Q method)

 	(CategoricalDQN method)

 	(ConstrainedREPS method)

 	(DDPG method)

 	(DQN method)

 	(DeepAC method)

 	(DoubleDQN method)

 	(DoubleFQI method)

 	(DoubleQLearning method)

 	(DuelingDQN method)

 	(ExpectedSARSA method)

 	(FQI method)

 	(GPOMDP method)

 	(LSPI method)

 	(MaxminDQN method)

 	(MaxminQLearning method)

 	(NoisyDQN method)

 	(PGPE method)

 	(PPO method)

 	(QLambda method)

 	(QLearning method)

 	(REINFORCE method)

 	(REPS method)

 	(RLearning method)

 	(RQLearning method)

 	(RWR method)

 	(Rainbow method)

 	(SAC method)

 	(SARSA method)

 	(SARSALambda method)

 	(SARSALambdaContinuous method)

 	(SpeedyQLearning method)

 	(StochasticAC method)

 	(StochasticAC_AVG method)

 	(TD3 method)

 	(TRPO method)

 	(TrueOnlineSARSALambda method)

 	(WeightedQLearning method)

 	(eNAC method)

 	
 	episodes_length() (in module mushroom_rl.utils.dataset)

 	epoch_info() (ConsoleLogger method)

 	(Logger method)

 	EpsGreedy (class in mushroom_rl.policy.td_policy)

 	error() (ConsoleLogger method)

 	(Logger method)

 	euler_to_quat() (in module mushroom_rl.utils.angles)

 	evaluate() (Core method)

 	exception() (ConsoleLogger method)

 	(Logger method)

 	ExpectedSARSA (class in mushroom_rl.algorithms.value.td)

 	ExponentialParameter (class in mushroom_rl.utils.parameters)

F

 	
 	Features() (in module mushroom_rl.features.features)

 	FiniteMDP (class in mushroom_rl.environments.finite_mdp)

 	fit() (A2C method)

 	(AbstractDQN method)

 	(AccumulatingTrace method)

 	(Agent method)

 	(AveragedDQN method)

 	(BoostedFQI method)

 	(COPDAC_Q method)

 	(CategoricalDQN method)

 	(ConstrainedREPS method)

 	(DDPG method)

 	(DQN method)

 	(DeepAC method)

 	(DoubleDQN method)

 	(DoubleFQI method)

 	(DoubleQLearning method)

 	(DuelingDQN method)

 	(EnsembleTable method)

 	(ExpectedSARSA method)

 	(FQI method)

 	(GPOMDP method)

 	(LSPI method)

 	(LinearApproximator method)

 	(MaxminDQN method)

 	(MaxminQLearning method)

 	(NoisyDQN method)

 	(PGPE method)

 	(PPO method)

 	(QLambda method)

 	(QLearning method)

 	(REINFORCE method)

 	(REPS method)

 	(RLearning method)

 	(RQLearning method)

 	(RWR method)

 	(Rainbow method)

 	(Regressor method)

 	(ReplacingTrace method)

 	(SAC method)

 	(SARSA method)

 	(SARSALambda method)

 	(SARSALambdaContinuous method)

 	(SpeedyQLearning method)

 	(StochasticAC method)

 	(StochasticAC_AVG method)

 	(TD3 method)

 	(TRPO method)

 	(Table method)

 	(TorchApproximator method)

 	(TrueOnlineSARSALambda method)

 	(WeightedQLearning method)

 	(eNAC method)

 	
 	force_arrow() (Viewer method)

 	force_symlink() (in module mushroom_rl.utils.folder)

 	FourierBasis (class in mushroom_rl.features.basis.fourier)

 	FQI (class in mushroom_rl.algorithms.value.batch_td)

 	function() (Viewer method)

G

 	
 	GaussianCholeskyDistribution (class in mushroom_rl.distributions.gaussian)

 	GaussianDiagonalDistribution (class in mushroom_rl.distributions.gaussian)

 	GaussianDistribution (class in mushroom_rl.distributions.gaussian)

 	GaussianPolicy (class in mushroom_rl.policy.gaussian_policy)

 	GaussianRBF (class in mushroom_rl.features.basis.gaussian_rbf)

 	GaussianRBFTensor (class in mushroom_rl.features.tensors.gaussian_tensor)

 	GaussianTorchPolicy (class in mushroom_rl.policy.torch_policy)

 	generate() (FourierBasis static method)

 	(GaussianRBF static method)

 	(GaussianRBFTensor static method)

 	(LQR static method)

 	(PolynomialBasis static method)

 	(Tiles static method)

 	(VoronoiTiles static method)

 	generate_grid_world() (in module mushroom_rl.environments.generators.grid_world)

 	generate_simple_chain() (in module mushroom_rl.environments.generators.simple_chain)

 	generate_taxi() (in module mushroom_rl.environments.generators.taxi)

 	get() (Callback method)

 	(PrioritizedReplayMemory method)

 	(ReplayMemory method)

 	(SumTree method)

 	get_action_features() (in module mushroom_rl.features.features)

 	get_gradient() (in module mushroom_rl.utils.torch)

 	get_parameters() (Distribution method)

 	(GaussianCholeskyDistribution method)

 	(GaussianDiagonalDistribution method)

 	(GaussianDistribution method)

 	get_q() (Boltzmann method)

 	(EpsGreedy method)

 	(Mellowmax method)

 	(TDPolicy method)

 	
 	get_regressor() (DeterministicPolicy method)

 	get_value() (ExponentialParameter method)

 	(LinearParameter method)

 	(Mellowmax.MellowmaxParameter method)

 	(Parameter method)

 	(VarianceDecreasingParameter method)

 	(VarianceIncreasingParameter method)

 	(VarianceParameter method)

 	(WindowedVarianceIncreasingParameter method)

 	(WindowedVarianceParameter method)

 	get_weights() (AbstractGaussianPolicy method)

 	(BoltzmannTorchPolicy method)

 	(ClippedGaussianPolicy method)

 	(DeterministicPolicy method)

 	(DiagonalGaussianPolicy method)

 	(GaussianPolicy method)

 	(GaussianTorchPolicy method)

 	(LinearApproximator method)

 	(OrnsteinUhlenbeckPolicy method)

 	(ParametricPolicy method)

 	(Regressor method)

 	(StateLogStdGaussianPolicy method)

 	(StateStdGaussianPolicy method)

 	(TorchApproximator method)

 	(TorchPolicy method)

 	(in module mushroom_rl.utils.torch)

 	GPOMDP (class in mushroom_rl.algorithms.policy_search.policy_gradient)

 	GridWorld (class in mushroom_rl.environments.grid_world)

 	GridWorldVanHasselt (class in mushroom_rl.environments.grid_world)

 	Gym (class in mushroom_rl.environments.gym_env)

H

 	
 	high (Box attribute)

I

 	
 	ImageViewer (class in mushroom_rl.utils.viewer)

 	info (AbstractGridWorld attribute)

 	(Atari attribute)

 	(CarOnHill attribute)

 	(CartPole attribute)

 	(DMControl attribute)

 	(Environment attribute)

 	(FiniteMDP attribute)

 	(GridWorld attribute)

 	(GridWorldVanHasselt attribute)

 	(Gym attribute)

 	(InvertedPendulum attribute)

 	(LQR attribute)

 	(MuJoCo attribute)

 	(PuddleWorld attribute)

 	(Segway attribute)

 	(ShipSteering attribute)

 	
 	info() (ConsoleLogger method)

 	(Logger method)

 	initial_value (ExponentialParameter attribute)

 	(LinearParameter attribute)

 	(Mellowmax.MellowmaxParameter attribute)

 	(Parameter attribute)

 	(VarianceDecreasingParameter attribute)

 	(VarianceIncreasingParameter attribute)

 	(VarianceParameter attribute)

 	(WindowedVarianceIncreasingParameter attribute)

 	(WindowedVarianceParameter attribute)

 	initialized (PrioritizedReplayMemory attribute)

 	(ReplayMemory attribute)

 	input_shape (Regressor attribute)

 	InvertedPendulum (class in mushroom_rl.environments.inverted_pendulum)

L

 	
 	LazyFrames (class in mushroom_rl.utils.frames)

 	learn() (Core method)

 	line() (Viewer method)

 	LinearApproximator (class in mushroom_rl.approximators.parametric.linear)

 	LinearParameter (class in mushroom_rl.utils.parameters)

 	list_registered() (AbstractGridWorld static method)

 	(Atari static method)

 	(CarOnHill static method)

 	(CartPole static method)

 	(DMControl static method)

 	(Environment static method)

 	(FiniteMDP static method)

 	(GridWorld static method)

 	(GridWorldVanHasselt static method)

 	(Gym static method)

 	(InvertedPendulum static method)

 	(LQR static method)

 	(MuJoCo static method)

 	(PuddleWorld static method)

 	(Segway static method)

 	(ShipSteering static method)

 	load() (mushroom_rl.algorithms.actor_critic.classic_actor_critic.COPDAC_Q class method)

 	(mushroom_rl.algorithms.actor_critic.classic_actor_critic.StochasticAC class method)

 	(mushroom_rl.algorithms.actor_critic.classic_actor_critic.StochasticAC_AVG class method)

 	(mushroom_rl.algorithms.actor_critic.deep_actor_critic.A2C class method)

 	(mushroom_rl.algorithms.actor_critic.deep_actor_critic.DDPG class method)

 	(mushroom_rl.algorithms.actor_critic.deep_actor_critic.DeepAC class method)

 	(mushroom_rl.algorithms.actor_critic.deep_actor_critic.PPO class method)

 	(mushroom_rl.algorithms.actor_critic.deep_actor_critic.SAC class method)

 	(mushroom_rl.algorithms.actor_critic.deep_actor_critic.TD3 class method)

 	(mushroom_rl.algorithms.actor_critic.deep_actor_critic.TRPO class method)

 	(mushroom_rl.algorithms.policy_search.black_box_optimization.ConstrainedREPS class method)

 	(mushroom_rl.algorithms.policy_search.black_box_optimization.PGPE class method)

 	(mushroom_rl.algorithms.policy_search.black_box_optimization.REPS class method)

 	(mushroom_rl.algorithms.policy_search.black_box_optimization.RWR class method)

 	(mushroom_rl.algorithms.policy_search.policy_gradient.GPOMDP class method)

 	(mushroom_rl.algorithms.policy_search.policy_gradient.REINFORCE class method)

 	(mushroom_rl.algorithms.policy_search.policy_gradient.eNAC class method)

 	(mushroom_rl.algorithms.value.batch_td.BoostedFQI class method)

 	(mushroom_rl.algorithms.value.batch_td.DoubleFQI class method)

 	(mushroom_rl.algorithms.value.batch_td.FQI class method)

 	(mushroom_rl.algorithms.value.batch_td.LSPI class method)

 	(mushroom_rl.algorithms.value.dqn.AbstractDQN class method)

 	(mushroom_rl.algorithms.value.dqn.AveragedDQN class method)

 	(mushroom_rl.algorithms.value.dqn.CategoricalDQN class method)

 	(mushroom_rl.algorithms.value.dqn.DQN class method)

 	(mushroom_rl.algorithms.value.dqn.DoubleDQN class method)

 	(mushroom_rl.algorithms.value.dqn.DuelingDQN class method)

 	(mushroom_rl.algorithms.value.dqn.MaxminDQN class method)

 	(mushroom_rl.algorithms.value.dqn.NoisyDQN class method)

 	(mushroom_rl.algorithms.value.dqn.Rainbow class method)

 	(mushroom_rl.algorithms.value.td.DoubleQLearning class method)

 	(mushroom_rl.algorithms.value.td.ExpectedSARSA class method)

 	(mushroom_rl.algorithms.value.td.MaxminQLearning class method)

 	(mushroom_rl.algorithms.value.td.QLambda class method)

 	(mushroom_rl.algorithms.value.td.QLearning class method)

 	(mushroom_rl.algorithms.value.td.RLearning class method)

 	(mushroom_rl.algorithms.value.td.RQLearning class method)

 	(mushroom_rl.algorithms.value.td.SARSA class method)

 	(mushroom_rl.algorithms.value.td.SARSALambda class method)

 	(mushroom_rl.algorithms.value.td.SARSALambdaContinuous class method)

 	(mushroom_rl.algorithms.value.td.SpeedyQLearning class method)

 	(mushroom_rl.algorithms.value.td.TrueOnlineSARSALambda class method)

 	(mushroom_rl.algorithms.value.td.WeightedQLearning class method)

 	(mushroom_rl.approximators.parametric.linear.LinearApproximator class method)

 	(mushroom_rl.approximators.parametric.torch_approximator.TorchApproximator class method)

 	(mushroom_rl.approximators.regressor.Regressor class method)

 	(mushroom_rl.core.agent.Agent class method)

 	(mushroom_rl.core.environment.MDPInfo class method)

 	(mushroom_rl.core.serialization.Serializable class method)

 	(mushroom_rl.distributions.distribution.Distribution class method)

 	(mushroom_rl.distributions.gaussian.GaussianCholeskyDistribution class method)

 	(mushroom_rl.distributions.gaussian.GaussianDiagonalDistribution class method)

 	(mushroom_rl.distributions.gaussian.GaussianDistribution class method)

 	(mushroom_rl.policy.deterministic_policy.DeterministicPolicy class method)

 	(mushroom_rl.policy.gaussian_policy.AbstractGaussianPolicy class method)

 	(mushroom_rl.policy.gaussian_policy.DiagonalGaussianPolicy class method)

 	(mushroom_rl.policy.gaussian_policy.GaussianPolicy class method)

 	(mushroom_rl.policy.gaussian_policy.StateLogStdGaussianPolicy class method)

 	(mushroom_rl.policy.gaussian_policy.StateStdGaussianPolicy class method)

 	(mushroom_rl.policy.noise_policy.ClippedGaussianPolicy class method)

 	(mushroom_rl.policy.noise_policy.OrnsteinUhlenbeckPolicy class method)

 	(mushroom_rl.policy.policy.ParametricPolicy class method)

 	(mushroom_rl.policy.policy.Policy class method)

 	(mushroom_rl.policy.td_policy.Boltzmann class method)

 	(mushroom_rl.policy.td_policy.EpsGreedy class method)

 	(mushroom_rl.policy.td_policy.Mellowmax class method)

 	(mushroom_rl.policy.td_policy.Mellowmax.MellowmaxParameter class method)

 	(mushroom_rl.policy.td_policy.TDPolicy class method)

 	(mushroom_rl.policy.torch_policy.BoltzmannTorchPolicy class method)

 	(mushroom_rl.policy.torch_policy.GaussianTorchPolicy class method)

 	(mushroom_rl.policy.torch_policy.TorchPolicy class method)

 	(mushroom_rl.utils.eligibility_trace.AccumulatingTrace class method)

 	(mushroom_rl.utils.eligibility_trace.ReplacingTrace class method)

 	(mushroom_rl.utils.parameters.ExponentialParameter class method)

 	(mushroom_rl.utils.parameters.LinearParameter class method)

 	(mushroom_rl.utils.parameters.Parameter class method)

 	(mushroom_rl.utils.replay_memory.PrioritizedReplayMemory class method)

 	(mushroom_rl.utils.replay_memory.ReplayMemory class method)

 	(mushroom_rl.utils.table.EnsembleTable class method)

 	(mushroom_rl.utils.table.Table class method)

 	(mushroom_rl.utils.variance_parameters.VarianceDecreasingParameter class method)

 	(mushroom_rl.utils.variance_parameters.VarianceIncreasingParameter class method)

 	(mushroom_rl.utils.variance_parameters.VarianceParameter class method)

 	(mushroom_rl.utils.variance_parameters.WindowedVarianceIncreasingParameter class method)

 	(mushroom_rl.utils.variance_parameters.WindowedVarianceParameter class method)

 	
 	load_zip() (mushroom_rl.utils.eligibility_trace.AccumulatingTrace class method)

 	(mushroom_rl.utils.eligibility_trace.ReplacingTrace class method)

 	log_agent() (DataLogger method)

 	(Logger method)

 	log_best_agent() (DataLogger method)

 	(Logger method)

 	log_numpy() (DataLogger method)

 	(Logger method)

 	log_pdf() (Distribution method)

 	(GaussianCholeskyDistribution method)

 	(GaussianDiagonalDistribution method)

 	(GaussianDistribution method)

 	log_prob_t() (BoltzmannTorchPolicy method)

 	(GaussianTorchPolicy method)

 	(TorchPolicy method)

 	Logger (class in mushroom_rl.core.logger)

 	low (Box attribute)

 	LQR (class in mushroom_rl.environments.lqr)

 	LSPI (class in mushroom_rl.algorithms.value.batch_td)

M

 	
 	make() (AbstractGridWorld static method)

 	(Atari static method)

 	(CarOnHill static method)

 	(CartPole static method)

 	(DMControl static method)

 	(Environment static method)

 	(FiniteMDP static method)

 	(GridWorld static method)

 	(GridWorldVanHasselt static method)

 	(Gym static method)

 	(InvertedPendulum static method)

 	(LQR static method)

 	(MuJoCo static method)

 	(PuddleWorld static method)

 	(Segway static method)

 	(ShipSteering static method)

 	max_p (SumTree attribute)

 	max_priority (PrioritizedReplayMemory attribute)

 	MaxAndSkip (class in mushroom_rl.environments.atari)

 	MaxminDQN (class in mushroom_rl.algorithms.value.dqn)

 	MaxminQLearning (class in mushroom_rl.algorithms.value.td)

 	MDPInfo (class in mushroom_rl.core.environment)

 	Mellowmax (class in mushroom_rl.policy.td_policy)

 	Mellowmax.MellowmaxParameter (class in mushroom_rl.policy.td_policy)

 	metadata (MaxAndSkip attribute)

 	minibatch_generator() (in module mushroom_rl.utils.minibatches)

 	minibatch_number() (in module mushroom_rl.utils.minibatches)

 	mk_dir_recursive() (in module mushroom_rl.utils.folder)

 	mle() (Distribution method)

 	(GaussianCholeskyDistribution method)

 	(GaussianDiagonalDistribution method)

 	(GaussianDistribution method)

 	model (EnsembleTable attribute)

 	(Regressor attribute)

 	MuJoCo (class in mushroom_rl.environments.mujoco)

 	mushroom_rl.algorithms.actor_critic.classic_actor_critic (module)

 	mushroom_rl.algorithms.actor_critic.deep_actor_critic (module)

 	mushroom_rl.algorithms.policy_search.black_box_optimization (module)

 	mushroom_rl.algorithms.policy_search.policy_gradient (module)

 	mushroom_rl.algorithms.value.batch_td (module)

 	mushroom_rl.algorithms.value.dqn (module)

 	mushroom_rl.algorithms.value.td (module)

 	mushroom_rl.approximators.parametric.linear (module)

 	mushroom_rl.approximators.parametric.torch_approximator (module)

 	mushroom_rl.approximators.regressor (module)

 	mushroom_rl.core.agent (module)

 	mushroom_rl.core.core (module)

 	mushroom_rl.core.environment (module)

 	mushroom_rl.core.logger (module)

 	mushroom_rl.core.serialization (module)

 	mushroom_rl.distributions.distribution (module)

 	
 	mushroom_rl.distributions.gaussian (module)

 	mushroom_rl.environments.atari (module)

 	mushroom_rl.environments.car_on_hill (module)

 	mushroom_rl.environments.cart_pole (module)

 	mushroom_rl.environments.dm_control_env (module)

 	mushroom_rl.environments.finite_mdp (module)

 	mushroom_rl.environments.generators.grid_world (module)

 	mushroom_rl.environments.generators.simple_chain (module)

 	mushroom_rl.environments.generators.taxi (module)

 	mushroom_rl.environments.grid_world (module)

 	mushroom_rl.environments.gym_env (module)

 	mushroom_rl.environments.inverted_pendulum (module)

 	mushroom_rl.environments.lqr (module)

 	mushroom_rl.environments.mujoco (module)

 	mushroom_rl.environments.puddle_world (module)

 	mushroom_rl.environments.segway (module)

 	mushroom_rl.environments.ship_steering (module)

 	mushroom_rl.features._implementations.features_implementation (module)

 	mushroom_rl.features.basis.fourier (module)

 	mushroom_rl.features.basis.gaussian_rbf (module)

 	mushroom_rl.features.basis.polynomial (module)

 	mushroom_rl.features.features (module)

 	mushroom_rl.features.tensors.gaussian_tensor (module)

 	mushroom_rl.features.tiles.tiles (module)

 	mushroom_rl.features.tiles.voronoi (module)

 	mushroom_rl.policy.deterministic_policy (module)

 	mushroom_rl.policy.gaussian_policy (module)

 	mushroom_rl.policy.noise_policy (module)

 	mushroom_rl.policy.policy (module)

 	mushroom_rl.policy.td_policy (module)

 	mushroom_rl.policy.torch_policy (module)

 	mushroom_rl.solvers.car_on_hill (module)

 	mushroom_rl.solvers.dynamic_programming (module)

 	mushroom_rl.solvers.lqr (module)

 	mushroom_rl.utils.angles (module)

 	mushroom_rl.utils.callbacks (module)

 	mushroom_rl.utils.dataset (module)

 	mushroom_rl.utils.eligibility_trace (module)

 	mushroom_rl.utils.features (module)

 	mushroom_rl.utils.folder (module)

 	mushroom_rl.utils.frames (module)

 	mushroom_rl.utils.minibatches (module)

 	mushroom_rl.utils.numerical_gradient (module)

 	mushroom_rl.utils.parameters (module)

 	mushroom_rl.utils.replay_memory (module)

 	mushroom_rl.utils.spaces (module)

 	mushroom_rl.utils.table (module)

 	mushroom_rl.utils.torch (module)

 	mushroom_rl.utils.value_functions (module)

 	mushroom_rl.utils.variance_parameters (module)

 	mushroom_rl.utils.viewer (module)

N

 	
 	n_actions (AccumulatingTrace attribute)

 	(ReplacingTrace attribute)

 	(Table attribute)

 	NoisyDQN (class in mushroom_rl.algorithms.value.dqn)

 	normalize_angle() (in module mushroom_rl.utils.angles)

 	
 	normalize_angle_positive() (in module mushroom_rl.utils.angles)

 	np_random (MaxAndSkip attribute)

 	numerical_diff_dist() (in module mushroom_rl.utils.numerical_gradient)

 	numerical_diff_function() (in module mushroom_rl.utils.numerical_gradient)

 	numerical_diff_policy() (in module mushroom_rl.utils.numerical_gradient)

O

 	
 	ObservationType (class in mushroom_rl.environments.mujoco)

 	
 	OrnsteinUhlenbeckPolicy (class in mushroom_rl.policy.noise_policy)

 	output_shape (Regressor attribute)

P

 	
 	Parameter (class in mushroom_rl.utils.parameters)

 	parameters() (BoltzmannTorchPolicy method)

 	(GaussianTorchPolicy method)

 	(TorchPolicy method)

 	parameters_size (Distribution attribute)

 	(GaussianCholeskyDistribution attribute)

 	(GaussianDiagonalDistribution attribute)

 	(GaussianDistribution attribute)

 	ParametricPolicy (class in mushroom_rl.policy.policy)

 	parse_dataset() (in module mushroom_rl.utils.dataset)

 	parse_grid() (in module mushroom_rl.environments.generators.grid_world)

 	(in module mushroom_rl.environments.generators.taxi)

 	path (DataLogger attribute)

 	(Logger attribute)

 	PGPE (class in mushroom_rl.algorithms.policy_search.black_box_optimization)

 	
 	Policy (class in mushroom_rl.policy.policy)

 	policy_iteration() (in module mushroom_rl.solvers.dynamic_programming)

 	polygon() (Viewer method)

 	PolynomialBasis (class in mushroom_rl.features.basis.polynomial)

 	PPO (class in mushroom_rl.algorithms.actor_critic.deep_actor_critic)

 	predict() (AccumulatingTrace method)

 	(EnsembleTable method)

 	(LinearApproximator method)

 	(Regressor method)

 	(ReplacingTrace method)

 	(Table method)

 	(TorchApproximator method)

 	preprocess_frame() (in module mushroom_rl.utils.frames)

 	PrioritizedReplayMemory (class in mushroom_rl.utils.replay_memory)

 	PuddleWorld (class in mushroom_rl.environments.puddle_world)

Q

 	
 	QLambda (class in mushroom_rl.algorithms.value.td)

 	
 	QLearning (class in mushroom_rl.algorithms.value.td)

 	quat_to_euler() (in module mushroom_rl.utils.angles)

R

 	
 	Rainbow (class in mushroom_rl.algorithms.value.dqn)

 	register() (mushroom_rl.core.environment.Environment class method)

 	(mushroom_rl.environments.atari.Atari class method)

 	(mushroom_rl.environments.car_on_hill.CarOnHill class method)

 	(mushroom_rl.environments.cart_pole.CartPole class method)

 	(mushroom_rl.environments.dm_control_env.DMControl class method)

 	(mushroom_rl.environments.finite_mdp.FiniteMDP class method)

 	(mushroom_rl.environments.grid_world.AbstractGridWorld class method)

 	(mushroom_rl.environments.grid_world.GridWorld class method)

 	(mushroom_rl.environments.grid_world.GridWorldVanHasselt class method)

 	(mushroom_rl.environments.gym_env.Gym class method)

 	(mushroom_rl.environments.inverted_pendulum.InvertedPendulum class method)

 	(mushroom_rl.environments.lqr.LQR class method)

 	(mushroom_rl.environments.mujoco.MuJoCo class method)

 	(mushroom_rl.environments.puddle_world.PuddleWorld class method)

 	(mushroom_rl.environments.segway.Segway class method)

 	(mushroom_rl.environments.ship_steering.ShipSteering class method)

 	Regressor (class in mushroom_rl.approximators.regressor)

 	REINFORCE (class in mushroom_rl.algorithms.policy_search.policy_gradient)

 	render() (MaxAndSkip method)

 	ReplacingTrace (class in mushroom_rl.utils.eligibility_trace)

 	ReplayMemory (class in mushroom_rl.utils.replay_memory)

 	REPS (class in mushroom_rl.algorithms.policy_search.black_box_optimization)

 	reset() (AbstractGaussianPolicy method)

 	(AbstractGridWorld method)

 	(AccumulatingTrace method)

 	(Atari method)

 	(Boltzmann method)

 	(BoltzmannTorchPolicy method)

 	(CarOnHill method)

 	(CartPole method)

 	(ClippedGaussianPolicy method)

 	(Core method)

 	(DMControl method)

 	(DeterministicPolicy method)

 	(DiagonalGaussianPolicy method)

 	(EnsembleTable method)

 	(Environment method)

 	(EpsGreedy method)

 	(FiniteMDP method)

 	(GaussianPolicy method)

 	(GaussianTorchPolicy method)

 	(GridWorld method)

 	(GridWorldVanHasselt method)

 	(Gym method)

 	(InvertedPendulum method)

 	(LQR method)

 	(MaxAndSkip method)

 	(Mellowmax method)

 	(MuJoCo method)

 	(OrnsteinUhlenbeckPolicy method)

 	(ParametricPolicy method)

 	(Policy method)

 	(PuddleWorld method)

 	(Regressor method)

 	(ReplacingTrace method)

 	(ReplayMemory method)

 	(Segway method)

 	(ShipSteering method)

 	(StateLogStdGaussianPolicy method)

 	(StateStdGaussianPolicy method)

 	(TDPolicy method)

 	(TorchPolicy method)

 	
 	reward_range (MaxAndSkip attribute)

 	RLearning (class in mushroom_rl.algorithms.value.td)

 	RQLearning (class in mushroom_rl.algorithms.value.td)

 	RWR (class in mushroom_rl.algorithms.policy_search.black_box_optimization)

S

 	
 	SAC (class in mushroom_rl.algorithms.actor_critic.deep_actor_critic)

 	sample() (Distribution method)

 	(GaussianCholeskyDistribution method)

 	(GaussianDiagonalDistribution method)

 	(GaussianDistribution method)

 	SARSA (class in mushroom_rl.algorithms.value.td)

 	SARSALambda (class in mushroom_rl.algorithms.value.td)

 	SARSALambdaContinuous (class in mushroom_rl.algorithms.value.td)

 	save() (A2C method)

 	(AbstractDQN method)

 	(AbstractGaussianPolicy method)

 	(AccumulatingTrace method)

 	(Agent method)

 	(AveragedDQN method)

 	(Boltzmann method)

 	(BoltzmannTorchPolicy method)

 	(BoostedFQI method)

 	(COPDAC_Q method)

 	(CategoricalDQN method)

 	(ClippedGaussianPolicy method)

 	(ConstrainedREPS method)

 	(DDPG method)

 	(DQN method)

 	(DeepAC method)

 	(DeterministicPolicy method)

 	(DiagonalGaussianPolicy method)

 	(Distribution method)

 	(DoubleDQN method)

 	(DoubleFQI method)

 	(DoubleQLearning method)

 	(DuelingDQN method)

 	(EnsembleTable method)

 	(EpsGreedy method)

 	(ExpectedSARSA method)

 	(ExponentialParameter method)

 	(FQI method)

 	(GPOMDP method)

 	(GaussianCholeskyDistribution method)

 	(GaussianDiagonalDistribution method)

 	(GaussianDistribution method)

 	(GaussianPolicy method)

 	(GaussianTorchPolicy method)

 	(LSPI method)

 	(LinearApproximator method)

 	(LinearParameter method)

 	(MDPInfo method)

 	(MaxminDQN method)

 	(MaxminQLearning method)

 	(Mellowmax method)

 	(Mellowmax.MellowmaxParameter method)

 	(NoisyDQN method)

 	(OrnsteinUhlenbeckPolicy method)

 	(PGPE method)

 	(PPO method)

 	(Parameter method)

 	(ParametricPolicy method)

 	(Policy method)

 	(PrioritizedReplayMemory method)

 	(QLambda method)

 	(QLearning method)

 	(REINFORCE method)

 	(REPS method)

 	(RLearning method)

 	(RQLearning method)

 	(RWR method)

 	(Rainbow method)

 	(Regressor method)

 	(ReplacingTrace method)

 	(ReplayMemory method)

 	(SAC method)

 	(SARSA method)

 	(SARSALambda method)

 	(SARSALambdaContinuous method)

 	(Serializable method)

 	(SpeedyQLearning method)

 	(StateLogStdGaussianPolicy method)

 	(StateStdGaussianPolicy method)

 	(StochasticAC method)

 	(StochasticAC_AVG method)

 	(TD3 method)

 	(TDPolicy method)

 	(TRPO method)

 	(Table method)

 	(TorchApproximator method)

 	(TorchPolicy method)

 	(TrueOnlineSARSALambda method)

 	(VarianceDecreasingParameter method)

 	(VarianceIncreasingParameter method)

 	(VarianceParameter method)

 	(WeightedQLearning method)

 	(WindowedVarianceIncreasingParameter method)

 	(WindowedVarianceParameter method)

 	(eNAC method)

 	save_zip() (A2C method)

 	(AbstractDQN method)

 	(AbstractGaussianPolicy method)

 	(AccumulatingTrace method)

 	(Agent method)

 	(AveragedDQN method)

 	(Boltzmann method)

 	(BoltzmannTorchPolicy method)

 	(BoostedFQI method)

 	(COPDAC_Q method)

 	(CategoricalDQN method)

 	(ClippedGaussianPolicy method)

 	(ConstrainedREPS method)

 	(DDPG method)

 	(DQN method)

 	(DeepAC method)

 	(DeterministicPolicy method)

 	(DiagonalGaussianPolicy method)

 	(Distribution method)

 	(DoubleDQN method)

 	(DoubleFQI method)

 	(DoubleQLearning method)

 	(DuelingDQN method)

 	(EnsembleTable method)

 	(EpsGreedy method)

 	(ExpectedSARSA method)

 	(ExponentialParameter method)

 	(FQI method)

 	(GPOMDP method)

 	(GaussianCholeskyDistribution method)

 	(GaussianDiagonalDistribution method)

 	(GaussianDistribution method)

 	(GaussianPolicy method)

 	(GaussianTorchPolicy method)

 	(LSPI method)

 	(LinearApproximator method)

 	(LinearParameter method)

 	(MDPInfo method)

 	(MaxminDQN method)

 	(MaxminQLearning method)

 	(Mellowmax method)

 	(Mellowmax.MellowmaxParameter method)

 	(NoisyDQN method)

 	(OrnsteinUhlenbeckPolicy method)

 	(PGPE method)

 	(PPO method)

 	(Parameter method)

 	(ParametricPolicy method)

 	(Policy method)

 	(PrioritizedReplayMemory method)

 	(QLambda method)

 	(QLearning method)

 	(REINFORCE method)

 	(REPS method)

 	(RLearning method)

 	(RQLearning method)

 	(RWR method)

 	(Rainbow method)

 	(Regressor method)

 	(ReplacingTrace method)

 	(ReplayMemory method)

 	(SAC method)

 	(SARSA method)

 	(SARSALambda method)

 	(SARSALambdaContinuous method)

 	(Serializable method)

 	(SpeedyQLearning method)

 	(StateLogStdGaussianPolicy method)

 	(StateStdGaussianPolicy method)

 	(StochasticAC method)

 	(StochasticAC_AVG method)

 	(TD3 method)

 	(TDPolicy method)

 	(TRPO method)

 	(Table method)

 	(TorchApproximator method)

 	(TorchPolicy method)

 	(TrueOnlineSARSALambda method)

 	(VarianceDecreasingParameter method)

 	(VarianceIncreasingParameter method)

 	(VarianceParameter method)

 	(WeightedQLearning method)

 	(WindowedVarianceIncreasingParameter method)

 	(WindowedVarianceParameter method)

 	(eNAC method)

 	screen (Viewer attribute)

 	seed() (AbstractGridWorld method)

 	(Atari method)

 	(CarOnHill method)

 	(CartPole method)

 	(DMControl method)

 	(Environment method)

 	(FiniteMDP method)

 	(GridWorld method)

 	(GridWorldVanHasselt method)

 	(Gym method)

 	(InvertedPendulum method)

 	(LQR method)

 	(MaxAndSkip method)

 	(MuJoCo method)

 	(PuddleWorld method)

 	(Segway method)

 	(ShipSteering method)

 	
 	Segway (class in mushroom_rl.environments.segway)

 	select_first_episodes() (in module mushroom_rl.utils.dataset)

 	select_random_samples() (in module mushroom_rl.utils.dataset)

 	Serializable (class in mushroom_rl.core.serialization)

 	set_beta() (Boltzmann method)

 	(Mellowmax method)

 	set_episode_end() (Atari method)

 	set_epsilon() (EpsGreedy method)

 	set_logger() (A2C method)

 	(AbstractDQN method)

 	(Agent method)

 	(AveragedDQN method)

 	(BoostedFQI method)

 	(COPDAC_Q method)

 	(CategoricalDQN method)

 	(ConstrainedREPS method)

 	(DDPG method)

 	(DQN method)

 	(DeepAC method)

 	(DoubleDQN method)

 	(DoubleFQI method)

 	(DoubleQLearning method)

 	(DuelingDQN method)

 	(ExpectedSARSA method)

 	(FQI method)

 	(GPOMDP method)

 	(LSPI method)

 	(MaxminDQN method)

 	(MaxminQLearning method)

 	(NoisyDQN method)

 	(PGPE method)

 	(PPO method)

 	(QLambda method)

 	(QLearning method)

 	(REINFORCE method)

 	(REPS method)

 	(RLearning method)

 	(RQLearning method)

 	(RWR method)

 	(Rainbow method)

 	(Regressor method)

 	(SAC method)

 	(SARSA method)

 	(SARSALambda method)

 	(SARSALambdaContinuous method)

 	(SpeedyQLearning method)

 	(StochasticAC method)

 	(StochasticAC_AVG method)

 	(TD3 method)

 	(TRPO method)

 	(TrueOnlineSARSALambda method)

 	(WeightedQLearning method)

 	(eNAC method)

 	set_parameters() (Distribution method)

 	(GaussianCholeskyDistribution method)

 	(GaussianDiagonalDistribution method)

 	(GaussianDistribution method)

 	set_q() (Boltzmann method)

 	(EpsGreedy method)

 	(Mellowmax method)

 	(TDPolicy method)

 	set_sigma() (GaussianPolicy method)

 	set_std() (DiagonalGaussianPolicy method)

 	set_weights() (AbstractGaussianPolicy method)

 	(BoltzmannTorchPolicy method)

 	(ClippedGaussianPolicy method)

 	(DeterministicPolicy method)

 	(DiagonalGaussianPolicy method)

 	(GaussianPolicy method)

 	(GaussianTorchPolicy method)

 	(LinearApproximator method)

 	(OrnsteinUhlenbeckPolicy method)

 	(ParametricPolicy method)

 	(Regressor method)

 	(StateLogStdGaussianPolicy method)

 	(StateStdGaussianPolicy method)

 	(TorchApproximator method)

 	(TorchPolicy method)

 	(in module mushroom_rl.utils.torch)

 	shape (AccumulatingTrace attribute)

 	(Box attribute)

 	(Discrete attribute)

 	(ExponentialParameter attribute)

 	(LinearParameter attribute)

 	(MDPInfo attribute)

 	(Mellowmax.MellowmaxParameter attribute)

 	(Parameter attribute)

 	(ReplacingTrace attribute)

 	(Table attribute)

 	(VarianceDecreasingParameter attribute)

 	(VarianceIncreasingParameter attribute)

 	(VarianceParameter attribute)

 	(WindowedVarianceIncreasingParameter attribute)

 	(WindowedVarianceParameter attribute)

 	ShipSteering (class in mushroom_rl.environments.ship_steering)

 	shortest_angular_distance() (in module mushroom_rl.utils.angles)

 	size (Discrete attribute)

 	(MDPInfo attribute)

 	(ReplayMemory attribute)

 	(SumTree attribute)

 	(Viewer attribute)

 	solve_car_on_hill() (in module mushroom_rl.solvers.car_on_hill)

 	SpeedyQLearning (class in mushroom_rl.algorithms.value.td)

 	square() (Viewer method)

 	StateLogStdGaussianPolicy (class in mushroom_rl.policy.gaussian_policy)

 	StateStdGaussianPolicy (class in mushroom_rl.policy.gaussian_policy)

 	step() (AbstractGridWorld method)

 	(Atari method)

 	(CarOnHill method)

 	(CartPole method)

 	(DMControl method)

 	(Environment method)

 	(FiniteMDP method)

 	(GridWorld method)

 	(GridWorldVanHasselt method)

 	(Gym method)

 	(InvertedPendulum method)

 	(LQR method)

 	(MaxAndSkip method)

 	(MuJoCo method)

 	(PuddleWorld method)

 	(Segway method)

 	(ShipSteering method)

 	(in module mushroom_rl.solvers.car_on_hill)

 	StochasticAC (class in mushroom_rl.algorithms.actor_critic.classic_actor_critic)

 	StochasticAC_AVG (class in mushroom_rl.algorithms.actor_critic.classic_actor_critic)

 	stop() (A2C method)

 	(AbstractDQN method)

 	(AbstractGridWorld method)

 	(Agent method)

 	(Atari method)

 	(AveragedDQN method)

 	(BoostedFQI method)

 	(COPDAC_Q method)

 	(CarOnHill method)

 	(CartPole method)

 	(CategoricalDQN method)

 	(ConstrainedREPS method)

 	(DDPG method)

 	(DMControl method)

 	(DQN method)

 	(DeepAC method)

 	(DoubleDQN method)

 	(DoubleFQI method)

 	(DoubleQLearning method)

 	(DuelingDQN method)

 	(Environment method)

 	(ExpectedSARSA method)

 	(FQI method)

 	(FiniteMDP method)

 	(GPOMDP method)

 	(GridWorld method)

 	(GridWorldVanHasselt method)

 	(Gym method)

 	(InvertedPendulum method)

 	(LQR method)

 	(LSPI method)

 	(MaxminDQN method)

 	(MaxminQLearning method)

 	(MuJoCo method)

 	(NoisyDQN method)

 	(PGPE method)

 	(PPO method)

 	(PuddleWorld method)

 	(QLambda method)

 	(QLearning method)

 	(REINFORCE method)

 	(REPS method)

 	(RLearning method)

 	(RQLearning method)

 	(RWR method)

 	(Rainbow method)

 	(SAC method)

 	(SARSA method)

 	(SARSALambda method)

 	(SARSALambdaContinuous method)

 	(Segway method)

 	(ShipSteering method)

 	(SpeedyQLearning method)

 	(StochasticAC method)

 	(StochasticAC_AVG method)

 	(TD3 method)

 	(TRPO method)

 	(TrueOnlineSARSALambda method)

 	(WeightedQLearning method)

 	(eNAC method)

 	strong_line() (ConsoleLogger method)

 	(Logger method)

 	SumTree (class in mushroom_rl.utils.replay_memory)

T

 	
 	Table (class in mushroom_rl.utils.table)

 	TD3 (class in mushroom_rl.algorithms.actor_critic.deep_actor_critic)

 	TDPolicy (class in mushroom_rl.policy.td_policy)

 	Tiles (class in mushroom_rl.features.tiles.tiles)

 	to_float_tensor() (in module mushroom_rl.utils.torch)

 	to_int_tensor() (in module mushroom_rl.utils.torch)

 	
 	TorchApproximator (class in mushroom_rl.approximators.parametric.torch_approximator)

 	TorchPolicy (class in mushroom_rl.policy.torch_policy)

 	torque_arrow() (Viewer method)

 	total_p (SumTree attribute)

 	TRPO (class in mushroom_rl.algorithms.actor_critic.deep_actor_critic)

 	TrueOnlineSARSALambda (class in mushroom_rl.algorithms.value.td)

U

 	
 	uniform_grid() (in module mushroom_rl.utils.features)

 	unwrapped (MaxAndSkip attribute)

 	update() (AccumulatingTrace method)

 	(Boltzmann method)

 	(EpsGreedy method)

 	(ExponentialParameter method)

 	(LinearParameter method)

 	(Mellowmax method)

 	(Mellowmax.MellowmaxParameter method)

 	(Parameter method)

 	(PrioritizedReplayMemory method)

 	(ReplacingTrace method)

 	(SumTree method)

 	(VarianceDecreasingParameter method)

 	(VarianceIncreasingParameter method)

 	(VarianceParameter method)

 	(WindowedVarianceIncreasingParameter method)

 	(WindowedVarianceParameter method)

 	
 	use_cuda (BoltzmannTorchPolicy attribute)

 	(GaussianTorchPolicy attribute)

 	(TorchPolicy attribute)

V

 	
 	value_iteration() (in module mushroom_rl.solvers.dynamic_programming)

 	VarianceDecreasingParameter (class in mushroom_rl.utils.variance_parameters)

 	VarianceIncreasingParameter (class in mushroom_rl.utils.variance_parameters)

 	
 	VarianceParameter (class in mushroom_rl.utils.variance_parameters)

 	Viewer (class in mushroom_rl.utils.viewer)

 	VoronoiTiles (class in mushroom_rl.features.tiles.voronoi)

W

 	
 	warning() (ConsoleLogger method)

 	(Logger method)

 	weak_line() (ConsoleLogger method)

 	(Logger method)

 	WeightedQLearning (class in mushroom_rl.algorithms.value.td)

 	weights_size (AbstractGaussianPolicy attribute)

 	(ClippedGaussianPolicy attribute)

 	(DeterministicPolicy attribute)

 	(DiagonalGaussianPolicy attribute)

 	(GaussianPolicy attribute)

 	(LinearApproximator attribute)

 	(OrnsteinUhlenbeckPolicy attribute)

 	(ParametricPolicy attribute)

 	(Regressor attribute)

 	(StateLogStdGaussianPolicy attribute)

 	(StateStdGaussianPolicy attribute)

 	(TorchApproximator attribute)

 	
 	WindowedVarianceIncreasingParameter (class in mushroom_rl.utils.variance_parameters)

 	WindowedVarianceParameter (class in mushroom_rl.utils.variance_parameters)

Z

 	
 	zero_grad() (in module mushroom_rl.utils.torch)

 _static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 MushroomRL

 		
 Agent-Environment Interface

 		
 Agent

 		
 Environment

 		
 Core

 		
 Serialization

 		
 Logger

 		
 Actor-Critic

 		
 Classical Actor-Critic Methods

 		
 Deep Actor-Critic Methods

 		
 Policy search

 		
 Policy gradient

 		
 Black-Box optimization

 		
 Value-Based

 		
 TD

 		
 Batch TD

 		
 DQN

 		
 Approximators

 		
 Regressor

 		
 Approximator

 		
 Linear

 		
 Torch Approximator

 		
 Distributions

 		
 Gaussian

 		
 Environments

 		
 Environments

 		
 Atari

 		
 Car on hill

 		
 DeepMind Control Suite

 		
 Finite MDP

 		
 Grid World

 		
 Gym

 		
 Inverted pendulum

 		
 Cart Pole

 		
 LQR

 		
 Mujoco

 		
 Puddle World

 		
 Segway

 		
 Ship steering

 		
 Generators

 		
 Grid world

 		
 Simple chain

 		
 Taxi

 		
 Features

 		
 Basis

 		
 Fourier

 		
 Gaussian RBF

 		
 Polynomial

 		
 Tensors

 		
 Gaussian tensor

 		
 Tiles

 		
 Rectangular Tiles

 		
 Voronoi Tiles

 		
 Policy

 		
 Deterministic policy

 		
 Gaussian policy

 		
 Noise policy

 		
 TD policy

 		
 Torch policy

 		
 Solvers

 		
 Dynamic programming

 		
 Car-On-Hill brute-force solver

 		
 LQR solver

 		
 Utils

 		
 Angles

 		
 Callbacks

 		
 Dataset

 		
 Eligibility trace

 		
 Features

 		
 Folder

 		
 Frames

 		
 Minibatches

 		
 Numerical gradient

 		
 Parameters

 		
 Replay memory

 		
 Spaces

 		
 Table

 		
 Torch

 		
 Value Functions

 		
 Variance parameters

 		
 Viewer

 		
 How to make a simple experiment

 		
 How to make an advanced experiment

 		
 How to create a regressor

 		
 Usage of the Regressor interface

 		
 Example

 		
 Generic regressor

 		
 Example

 		
 How to make a deep RL experiment

 		
 Solving Atari with DQN

 		
 Solving MuJoCo with DDPG

 		
 How to use the Logger

 		
 Constructing the Logger

 		
 Logging message on the console

 		
 Logging a Reinforcement Learning experiment

 		
 Advanced Logger topics

 		
 How to use the Environment interface

 		
 Old-school enviroment creation

 		
 Environment registration

 		
 Creating a new environment

 		
 Learning in the toy environment

 		
 How to use the Serializable interface

 		
 Save and load from disk

 		
 Full Save

 		
 Implementing the Serializable interface

_static/ajax-loader.gif

